[4] BANERJEE A, BERNOULLI D, ZHANG H T, et al. Ultralarge elastic deformation of nanoscale diamond[J]. Science, 2018, 360(6386): 300-302.
[5] DANG C Q, CHOU J P, DAI B, et al. Achieving large uniform tensile elasticity in microfabricated diamond[J]. Science, 2021, 371(6524): 76-78.
[6] YUE Y H, GAO Y F, HU W T, et al. Hierarchically structured diamond composite with exceptional toughness[J]. Nature, 2020, 582(7812): 370-374.
[7] LU F X, FU Y L, ZHONG G F, et al. Fracture behavior of thick diamond films prepared by DC arc plasma jet method[J]. Diamond and Related Materials, 1998, 7(6): 733-736.
[8] ZHAO Y, TU J P, CHEN L X, et al. Toughness enhancement of single-crystal diamond by the homoepitaxial growth of periodic nitrogen-doped nano-multilayers[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(4): 766-771.
[9] LIAN M, WANG F, RONG K X, et al. Enhancing the fracture toughness of polycrystalline diamond by adjusting the transgranular fracture and intergranular fracture modes[J]. International Journal of Refractory Metals and Hard Materials, 2024, 118: 106490.
[10] MARY JOY R, POBEDINSKAS P, BAULE N, et al. The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films[J]. Acta Materialia, 2024, 264: 119548.
[11] QIU K L, HOU J P, CHEN S, et al. Self-healing of fractured diamond[J]. Nature Materials, 2023, 22(11): 1317-1323.
[12] WEN X K, WEI J J, LIU J L, et al. Orientation variation along growth direction of millimeter free-standing CVD diamond thinned by mechanical grinding[J]. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(8): 839-844.
[13] PICKLES C S J. The fracture stress of chemical vapour deposited diamond[J]. Diamond and Related Materials, 2002, 11(12): 1913-1922.
[14] AN K, CHEN L X, YAN X B, et al. Fracture strength and toughness of chemical-vapor-deposited polycrystalline diamond films[J]. Ceramics International, 2018, 44(15): 17845-17851.
[16] DRORY M D. Fracture of synthetic diamond[J]. Journal of Applied Physics, 1996(78): 3083-3088.
[17] DRORY M D, GARDINIER C F, SPECK J S. Fracture toughness of chemically vapor-deposited diamond[J]. Journal of the American Ceramic Society, 1991, 74(12): 3148-3150.
[18] LU F X, JIANG Z, TANG W Z, et al. Accurate measurement of strength and fracture toughness for miniature-size thick diamond-film samples by three-point bending at constant loading rate[J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 770-774.
[19] LI C M, ZHU R H, LIU J L, et al. Effect of arc characteristics on the properties of large size diamond wafer prepared by DC arc plasma jet CVD[J]. Diamond and Related Materials, 2013, 39: 47-52.
[20] LI C M, CHEN L X, WANG L M, et al. The properties of free-standing diamond films after plasma high temperature treatment of the rapid heating[J]. Diamond and Related Materials, 2011, 20(4): 492-495.
[21] MIYAZAKI H, YOSHIZAWA Y I, HIRAO K, et al. Evaluation of fracture toughness of ceramic thin plates through modified single edge-precracked plate method[J]. Scripta Materialia, 2015, 103: 34-36.
[22] MIYAZAKI H, YOSHIZAWA Y I, HIRAO K, et al. Round-robin test on the fracture toughness of ceramic thin plates through modified single edge-precracked plate method[J]. Journal of the European Ceramic Society, 2016, 36(13): 3245-3248.
[23] Fine ceramics (advanced ceramics, advanced technical ceramics). Test method for fracture toughness of monolithic ceramics at room temperature by single edge precracked beam (SEPB) method: ISO 15732[S]. ISO, 2003.
[24] JIANG Z, LU F X, TANG W Z, et al. Accurate measurement of fracture toughness of free standing diamond films by three-point bending tests with sharp pre-cracked specimens[J]. Diamond and Related Materials, 2000, 9(9/10): 1734-1738.
[25] AN K, CHEN L X, YAN X B, et al. Fracture behavior of diamond films deposited by DC arc plasma jet CVD[J]. Ceramics International, 2018, 44(11): 13402-13408.
[26] LIU S, LIU J L, LI C M, et al. The mechanical enhancement of chemical vapor deposited diamond film by plasma low-pressure/high-temperature treatment[J]. Carbon, 2013, 65: 365-370.
[27] ZHU W, BADZIAN A R, MESSIER R. Structural imperfections in CVD diamond films[J]. Journal of Materials Research, 1989, 4(3): 659-663.
[29] OHRING M. Materials science of thin films[M]. London: Elsevier, 2001.
[30] WANG F H, ZHENG X L, LU M X, et al. Fracture toughness of ceramics and notch radius II fracture toughness predicting method[J]. Journal of Inorganic Materials, 1997: 218-222.
[31] WANG F H, ZHENG X L, LU M X, et al. Fracture toughness of ceramics and notch radius I fracture toughness predicting method[J]. Journal of Inorganic Materials, 1997: 121-124.
[32] SONG X, LU M, WANG H, et al. Fracture mechanics of microcrystalline/nanocrystalline composited multilayer chemical vapor deposition self-standing diamond films[J]. Ceramics International, 2022, 48(15): 21868-21878.
[33] FIELD J E, FREEMAN C J. Strength and fracture properties of diamond[J]. Philosophical Magazine A, 1981, 43(3): 595-618.
[34] DAVIES A R, FIELD J E, TAKAHASHI K, et al. The toughness of free-standing CVD diamond[J]. Journal of Materials Science, 2004, 39(5): 1571-1574.
[35] DAVIES A R, FIELD J E, TAKAHASHI K, et al. Tensile and fatigue strength of free-standing CVD diamond[J]. Diamond and Related Materials, 2005, 14(1): 6-10.
[36] HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability[J]. Nature, 2014, 510(7504): 250-253.
[37] AN K, LIU P, SHAO S W, et al. Exploring three-point-bending fracture toughness of thick diamond films from different directions[J]. Surface and Coatings Technology, 2022, 448: 128888.