• Journal of Applied Optics
  • Vol. 44, Issue 3, 565 (2023)
Zikang ZHANG1, Songfeng YIN2,*, Liangcai CAO3, and Cheng LIU2
Author Affiliations
  • 1School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China
  • 2Hefei Institute for Public Safety Research, Tsinghua University, Hefei 230601, China
  • 3State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing 100084, China
  • show less
    DOI: 10.5768/JAO202344.0302004 Cite this Article
    Zikang ZHANG, Songfeng YIN, Liangcai CAO, Cheng LIU. Method for cross-age face recognition based on identity-age sharing features[J]. Journal of Applied Optics, 2023, 44(3): 565 Copy Citation Text show less
    References

    [1] CAO Q, SHEN L, XIE W, et al. Vggface2: A dataset for recognising faces across pose and age[C]//2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018). Xi'an, China: IEEE, 2018: 67-74.

    [3] GUO Y, ZHANG L, HU Y, et al. Ms-celeb-1m: a dataset and benchmark for large-scale face recognition[C]//European conference on computer vision. Amsterdam, Netherlands: Springer, Cham, 2016: 87-102.

    [5] TAIGMAN Y, YANG M, RANZATO M A, et al. Deepface: closing the gap to human-level performance in face verification[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA: IEEE, 2014: 1701-1708.

    [6] ANTIPOV G, BACCOUCHE M, DUGELAY J L. Face aging with conditional generative adversarial networks[C]//2017 IEEE international conference on image processing (ICIP). Piscataway, NJ: IEEE, 2017: 2089-2093.

    [7] ZHANG Z, SONG Y, QI H. Age progression/regression by conditional adversarial autoencoder[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 5810-5818.

    [8] GONG D, LI Z, LIN D, et al. Hidden factor analysis for age invariant face recognition[C]// 2013 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ: IEEE, 2013: 2872-2879.

    [9] WANG H, GONG D, LI Z, et al. Decorrelated adversarial learning for age-invariant face recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 3527-3536.

    [10] HUANG Z, ZHANG J, SHAN H. When age-invariant face recognition meets face age synthesis: A multi-task learning framework[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA: IEEE, 2021: 7282-7291.

    [11] WU H, XIAO B, CODELLA N, et al. Cvt: introducing convolutions to vision transformers[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2021: 22-31.

    [12] SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA: IEEE, 2021: 16519-16529.

    [13] CAO K, RONG Y, LI C, et al. Pose-robust face recognition via deep residual equivariant mapping[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 5187-5196.

    [14] WANG Y, GONG D, ZHOU Z, et al. Orthogonal deep features decomposition for age-invariant face recognition[C]//Proceedings of the European conference on computer vision (ECCV). Munich, Germany: Springer, Cham, 2018: 738-753.

    [16] DENG J, GUO J, XUE N, et al. Arcface: additive angular margin loss for deep face recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 4690-4699.

    [17] WANG H, WANG Y, ZHOU Z, et al. Cosface: large margin cosine loss for deep face recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 5265-5274.

    [18] LIU Cheng, CAO Liangcai, JING Ye, et al. Transformer for age-invariant face recognition[J]. Laser & Optoelectronics Progress, 2022, 60(10): 1-11.

    [19] MOSCHOGLOU S, PAPAIOANNOU A, SAGONAS C, et al. Agedb: the first manually collected, in-the-wild age database[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, HI, USA: IEEE, 2017: 51-59.

    [21] ZHENG T, DENG W, HU J. Cross-age lfw: a database for studying cross-age face recognition in unconstrained environments[EB/OL]. [2022-08-22]. https://arxiv.org/pdf/1708.08197.pdf.

    [22] HUANG G B, MATTAR M, BERG T, et al. Labeled faces in the wild: a database forstudying face recognition in unconstrained environments[C]//Workshop on faces in'Real-Life'Images: detection, alignment, and recognition. Marseille, France: University of Massachusetts, Amherst, 2008: 7-49.

    [23] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, 2015: 1-9.

    Zikang ZHANG, Songfeng YIN, Liangcai CAO, Cheng LIU. Method for cross-age face recognition based on identity-age sharing features[J]. Journal of Applied Optics, 2023, 44(3): 565
    Download Citation