[2] KLUMPP A R. Apollo lunar descent guidance[J]. Automatica, 1974, 10(2): 133-146.
[8] LI Y, CHEN W C, ZHOU H, et al. Conjugate gradient method with pseudospectral collocation scheme for optimal rocket landing guidance[J]. Aerospace Science and Technology, 2020, 104: 105999.
[9] SIMPLICIO P, MARCOS A, BENNANI S. Reusable launchers: development of a coupled flight mechanics, guidance, and control benchmark[J]. Journal of Spacecraft and Rockets, 2020, 57(1): 74-89.
[10] JIANG X Q, LI S, FURFARO R. Integrated guidance for Mars entry and powered descent using reinforcement learning and pseudospectral method[J]. Acta Astronautica, 2019, 163: 114-129.
[11] WANG J B, CUI N G, WEI C Z. Optimal rocket landing guidance using convex optimization and model predictive control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(5): 1078-1092.
[12] SONG Z Y, WANG C, THEIL S, et al. Survey of autonomous guidance methods for powered planetary landing[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 652-674.
[16] ZHU L H, WANG Y, WU Z Q, et al. The intelligent trajectory optimization of multistage rocket with Gauss pseudo-spectral method[J]. Intelligent Automation & Soft Computing, 2022, 33(1): 291-303.
[17] FURFARO R, SCORSOGLIO A, LINARES R, et al. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach[J]. Acta Astronautica, 2020, 171: 156-171.
[20] WANG J B, MA H J, LI H X, et al. Real-time guidance for powered landing of reusable rockets via deep learning[J]. Neural Computing and Applications, 2023, 35(9): 6383-6404.
[21] XIONG F F, LI C, ZHAO Y, et al. Rocket landing guidance using convex optimization and proportional navigation considering performance-limited engine[J]. Acta Astronautica, 2022, 201: 209-223.
[25] LIU X F. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(1): 65-77.
[26] MIELE A, VENKATARAMAN P. Optimal trajectories for aeroassisted orbital transfer[J]. Acta Astronautica, 1984, 11: 423-433.
[28] MIELE A, WANG T. Multiple-subarc gradient-restoration algorithm, part 2: application to a multistage launch vehicle design[J]. Journal of Optimization Theory and Applications, 2003, 116(1): 19-39.
[29] HUNTINGTON G T. Advancement and analysis of a Gauss pseudospectral transcription for optimal control problems[D]. Cambridge: Massachusetts Institute of Technology, 2007.
[30] GARG D. Advances in global pseudospectral methods for optimal control[D]. Gainesville: University of Florida, 2011.
[31] DARBY C L. hp-pseudospectral method for solving continuous-time nonlinear optimal control problems[D]. Gainesville: University of Florida, 2011.
[32] LIU Y, QIAN Y J, LI J Q, et al. Mars exploring trajectory optimization using Gauss pseudo-spectral method[C]//International Conference on Mechatronics and Automation. Chengdu: IEEE, 2012: 2371-2377.
[35] HARPOLD J C, GRAVES C A. Shuttle entry guidance[J]. Journal of the Astronautical Sciences, 1979, 27(3): 239-268.
[36] FERRANTE R. A robust control approach for rocket landing[D]. Edinburgh: University of Edinburgh, 2017.
[38] LU P, SHEN Z J, DUKEMAN G, et al. Entry guidance by trajectory regulation[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Denver: AIAA, 2000: 3958.
[39] NING G D, ZHANG S G, FANG Z P. Integrated entry guidance for reusable launch vehicle[J]. Chinese Journal of Aeronautics, 2007, 20(1): 1-8.
[40] DUKEMAN G. Profile-following entry guidance using linear quadratic regulator theory[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Monterey: AIAA, 2002: 4457.
[41] ZIMMERMAN C, DUKEMAN G, HANSON J. Automated method to compute orbital reentry trajectories with heating constraints[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(4): 523-529.
[42] REHMAN O U, FIDAN B, PETERSEN I R. Uncertainty modeling and robust minimax LQR control of multivariable nonlinear systems with application to hypersonic flight[J]. Asian Journal of Control, 2012, 14(5): 1180-1193.
[44] TALOLE S, BENITO J, MEASE K. Sliding mode observer for drag tracking in entry guidance[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Hilton Head: AIAA, 2007: 6851.
[47] LU P. Entry guidance and trajectory control for reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1): 143-149.
[48] HARPOLD J C, GAVERT D E. Space shuttle entry guidance performance results[J]. Journal of Guidance, Control, and Dynamics, 1983, 6(6): 442-447.
[51] GRAVES C A, HARPOLD J C. Apollo experience report: mission planning for Apollo entry: NASA TN D-6725[R]. Washington: NASA, 1972.
[52] LU P. Entry guidance: a unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 713-728.
[53] LU P. Asymptotic analysis of quasi-equilibrium glide in lifting entry flight[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 662-670.
[54] SHEN Z J, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 111-121.
[61] CHERRY G. A general, explicit, optimizing guidance law for rocket-propelled spaceflight[C]//Astrodynamics Guidance and Control Conference. Los Angeles: AIAA, 1964: 638.
[62] KLUMPP A. A manually retargeted automatic descent and landing system for LEM[C]//Guidance and Control Conference. Seattle: AIAA, 1966: 1863.
[63] BENNETT F. Lunar descent and ascent trajectories[C]//The 8th Aerospace Sciences Meeting. [S.l.]: AIAA, 1970: 25.
[64] LU P. Augmented Apollo powered descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(3): 447-457.
[65] LU P. Theory of fractional-polynomial powered descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(3): 398-409.
[72] MCINNES C R. Nonlinear transformation methods for gravity-turn descent[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(1): 247-248.
[73] MCINNES C R. Path shaping guidance for terminal lunar descent[J]. Acta Astronautica, 1995, 36(7): 367-377.
[74] MCINNES C R. Gravity turn descent with quadratic air drag[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(2): 393-394.
[75] MCINNES C R. Gravity-turn descent from low circular orbit conditions[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 183-185.
[76] MIZUNO T, SAITO H, ICHIKAWA M. Communication system and operation for lunar probes under lunar surface[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(1): 151-162.
[77] CITRON S J, DUNIN S E, MEISSINGER H F. A terminal guidance technique for lunar landing[J]. AIAA Journal, 1964, 2(3): 503-509.
[78] YANG R, LIU X. Gravity-turn-based precise landing guidance for reusable rockets[C]//Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020. Tianjin: Springer, 2020: 3423-3434.
[80] BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge: Cambridge University Press, 2004.
[81] NESTEROV Y, NEMIROVSKII A. Interior-point polynomial algorithms in convex programming[M]. Philadelphia: SIAM, 1994.
[82] SZMUK M, ACIKMESE B, BERNING A W. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints[C]//AIAA Guidance, Navigation, and Control Conference. San Diego: AIAA, 2016: 0378.
[84] YANG R Q, LIU X F, SONG Z Y. Rocket landing guidance based on linearization-free convexification[J]. Journal of Guidance, Control, and Dynamics, 2024, 47(2): 217-232.
[85] KAMATH A G, ELANGO P, YU Y, et al. Real-time sequential conic optimization for multi-phase rocket landing guidance[J]. IFAC-PapersOnLine, 2023, 56(2): 3118-3125.
[86] MAO Y Q, SZMUK M, AIKMEE B. Successive convexification of non-convex optimal control problems and its convergence properties[C]//The 55th Conference on Decision and Control (CDC). Las Vegas: IEEE, 2016: 3636-3641.
[87] BERTRAND R, EPENOY R. New smoothing techniques for solving bang-bang optimal control problems — numerical results and statistical interpretation[J]. Optimal Control Applications and Methods, 2002, 23(4): 171-197.
[88] JIANG F H, BAOYIN H, LI J F. Practical techniques for low-thrust trajectory optimization with homotopic approach[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 245-258.
[91] PAN B F, LU P, PAN X, et al. Double-homotopy method for solving optimal control problems[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(8): 1706-1720.
[92] GUO T D, JIANG F H, LI J F. Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization[J]. Acta Astronautica, 2012, 71: 38-50.
[94] SNCHEZ-SNCHEZ C, IZZO D. Real-time optimal control via deep neural networks: study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1122-1135.
[95] CHENG L, WANG Z B, JIANG F H, et al. Fast generation of optimal asteroid landing trajectories using deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 2642-2655.
[96] GAUDET B, LINARES R, FURFARO R. Deep reinforcement learning for six degree-of-freedom planetary landing[J]. Advances in Space Research, 2020, 65(7): 1723-1741.