[1] Fitzgerald A J, Wallace V P, Jimenez-Linan M et al. Terahertz pulsed imaging of human breast tumors[J]. Radiology, 239, 533-540(2006).
[2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).
[3] Iwaszczuk K, Heiselberg H, Jepsen P U. Terahertz radar cross section measurements[J]. Optics Express, 18, 26399-26408(2010).
[4] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).
[5] Ni X J, Emani N K, Kildishev A V et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 335, 427(2012).
[6] Aieta F, Genevet P, Kats M A et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 12, 4932-4936(2012).
[7] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).
[8] Zhang X Q, Tian Z, Yue W S et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 25, 4567-4572(2013).
[9] Su X Q, Ouyang C, Xu N N et al. Active metasurface terahertz deflector with phase discontinuities[J]. Optics Express, 23, 27152-27158(2015).
[10] Yang Q L, Gu J Q, Wang D Y et al. Efficient flat metasurface lens for terahertz imaging[J]. Optics Express, 22, 25931-25939(2014).
[11] Yang Q L, Gu J Q, Xu Y H et al. Broadband and robust metalens with nonlinear phase profiles for efficient terahertz wave control[J]. Advanced Optical Materials, 5, 1601084(2017).
[12] Wang Q, Zhang X Q, Xu Y H et al. A broadband metasurface-based terahertz flat-lens array[J]. Advanced Optical Materials, 3, 779-785(2015).
[13] He J W, Ye J S, Wang X K et al. A broadband terahertz ultrathin multi-focus lens[J]. Scientific Reports, 6, 28800(2016).
[14] Jia D L, Xu J, Xin T et al. Multifocal terahertz lenses realized by polarization-insensitive reflective metasurfaces[J]. Applied Physics Letters, 114, 101105(2019).
[15] Kuznetsov S A, Astafev M A, Beruete M et al. Planar holographic metasurfaces for terahertz focusing[J]. Scientific Reports, 5, 7738(2015).
[16] Jiang X, Chen H, Li Z Y et al. All-dielectric metalens for terahertz wave imaging[J]. Optics Express, 26, 14132-14142(2018).
[17] Zhang H F, Zhang X Q, Xu Q et al. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation[J]. Advanced Optical Materials, 6, 1700773(2018).
[18] Wang Z, Yao Y, Pan W K et al. Bifunctional manipulation of terahertz waves with high-efficiency transmissive dielectric metasurfaces[J]. Advanced Science, 10, 2205499(2023).
[19] Decker M, Staude I, Falkner M et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 3, 813-820(2015).
[20] Liu W, Kivshar Y S. Generalized kerker effects in nanophotonics and meta-optics[J]. Optics Express, 26, 13085-13105(2018).
[21] Shamkhi H K, Baryshnikova K V, Sayanskiy A et al. Transverse scattering and generalized kerker effects in all-dielectric Mie-resonant metaoptics[J]. Physical Review Letters, 122, 193905(2019).
[22] Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 110, 197401(2013).
[23] Zhang L, Ding J, Zheng H Y et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics[J]. Nature Communications, 9, 1481(2018).
[24] Fathnan A A, Liu M K, Powell D A. Achromatic Huygens’ metalenses with deeply subwavelength thickness[J]. Advanced Optical Materials, 8, 2000754(2020).
[25] Yang Q L, Kruk S, Xu Y H et al. Mie-resonant membrane Huygens’ metasurfaces[J]. Advanced Functional Materials, 30, 1906851(2020).
[26] Shrestha S, Overvig A C, Lu M et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 7, 85(2018).
[27] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).
[28] Aieta F, Kats M A, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 347, 1342-1345(2015).
[29] Chen W T, Zhu A Y, Sisler J et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 10, 355(2019).
[30] Cheng Q Q, Ma M L, Yu D et al. Broadband achromatic metalens in terahertz regime[J]. Science Bulletin, 64, 1525-1531(2019).
[31] Gao Y F, Gu J Q, Jia R D et al. Polarization independent achromatic meta-lens designed for the terahertz domain[J]. Frontiers in Physics, 8, 606693(2020).
[32] Xu Y, Gu J Q, Gao Y F et al. Broadband achromatic terahertz metalens constituted by Si-SiO2-Si hybrid meta-atoms[J]. Advanced Functional Materials, 10, 2302821(2023).
[33] Larouche S, Tsai Y J, Tyler T et al. Infrared metamaterial phase holograms[J]. Nature Materials, 11, 450-454(2012).
[34] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).
[35] Chong K E, Wang L, Staude I et al. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms[J]. ACS Photonics, 3, 514-519(2016).
[36] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 4, 2807(2013).
[37] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 2808(2013).
[38] Wang L, Kruk S, Tang H Z et al. Grayscale transparent metasurface holograms[J]. Optica, 3, 1504-1505(2016).
[39] Hu D, Wang X K, Feng S F et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 1, 186-191(2013).
[40] Wang Q, Zhang X Q, Xu Y H et al. Broadband metasurface holograms: toward complete phase and amplitude engineering[J]. Scientific Reports, 6, 32867(2016).
[41] Wang Q, Xu Q, Zhang X Q et al. All-dielectric meta-holograms with holographic images transforming longitudinally[J]. ACS Photonics, 5, 599-606(2018).
[42] Wu T, Zhang X Q, Xu Q et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 10, 2101223(2022).
[43] Wang Q, Plum E, Yang Q L et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves[J]. Light: Science & Applications, 7, 25(2018).
[44] Wang Q, Zhang X Q, Plum E et al. Polarization and frequency multiplexed terahertz meta-holography[J]. Advanced Optical Materials, 5, 1700277(2017).
[45] Zhao H, Zhang C M, Guo J Y et al. Metasurface hologram for multi-image hiding and seeking[J]. Physical Review Applied, 12, 054011(2019).
[46] Guo J Y, Wang T, Zhao H et al. Reconfigurable terahertz metasurface pure phase holograms[J]. Advanced Optical Materials, 7, 1801696(2019).
[47] Cong L Q, Srivastava Y K, Zhang H F et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting[J]. Light: Science & Applications, 7, 28(2018).
[48] Yang Q L, Liu M K, Kruk S et al. Polarization-sensitive dielectric membrane metasurfaces[J]. Advanced Optical Materials, 8, 2000555(2020).
[49] Li B H, Li X W, Zhao R Z et al. Polarization multiplexing terahertz metasurfaces through spatial femtosecond laser-shaping fabrication[J]. Advanced Optical Materials, 8, 2000136(2020).
[50] Chen B W, Yang S X, Chen J et al. Directional terahertz holography with thermally active Janus metasurface[J]. Light: Science & Applications, 12, 136(2023).
[51] Wang H, Qin Z, Huang L L et al. Metasurface with dynamic chiral meta-atoms for spin multiplexing hologram and low observable reflection[J]. PhotoniX, 3, 10(2022).
[52] Rajabalipanah H, Rouhi K, Abdolali A et al. Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms[J]. Nanophotonics, 9, 2861-2877(2020).
[53] Jia, M, Wang, Z, Li, H T et al. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces[J]. Light: Science & Applications, 8, 16(2019).
[54] Liu W Y, Yang Q L, Xu Q et al. Multifunctional all-dielectric metasurfaces for terahertz multiplexing[J]. Advanced Optical Materials, 9, 2100506(2021).
[55] Zhao H, Quan B G, Wang X K et al. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band[J]. ACS Photonics, 5, 1726-1732(2018).
[56] Huang F, Xu Q, Liu W Y et al. Generating superposed terahertz perfect vortices via a spin-multiplexed all-dielectric metasurface[J]. Photonics Research, 11, 431-441(2023).
[57] Wang L, Yang Y, Deng L et al. Terahertz angle-multiplexed metasurface for multi-dimensional multiplexing of spatial and frequency domains[J]. Advanced Theory and Simulations, 3, 2000115(2020).
[58] Wang L, Yang Y, Gao F et al. Terahertz reconfigurable dielectric metasurface hybridized with vanadium dioxide for two-dimensional multichannel multiplexing[J]. Frontiers in Physics, 10, 992037(2022).
[59] Liu S, Noor A, Du L L et al. Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces[J]. ACS Photonics, 3, 1968-1977(2016).
[60] Zhang H F, Zhang X Q, Xu Q et al. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime[J]. Photonics Research, 6, 24-29(2017).
[61] Ma Z J, Hanham S M, Albella P et al. Terahertz all-dielectric magnetic mirror metasurfaces[J]. ACS Photonics, 3, 1010-1018(2016).
[62] Cheng Q Q, Wang J C, Ma L et al. Achromatic terahertz Airy beam generation with dielectric metasurfaces[J]. Nanophotonics, 10, 1123-1131(2021).
[63] Xi K L, Fang B, Ding L et al. Terahertz Airy beam generated by Pancharatnam-Berry phases in guided wave-driven metasurfaces[J]. Optics Express, 30, 16699-16711(2022).
[64] Wen J, Chen L, Yu B B et al. All-dielectric synthetic-phase metasurfaces generating practical airy beams[J]. ACS Nano, 15, 1030-1038(2021).
[65] Xu Y H, Zhang H F, Li Q et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control[J]. Nanophotonics, 9, 3393-3402(2020).
[66] Liu W Y, Yang Q L, Xu Q et al. Multichannel terahertz quasi-perfect vortex beams generation enabled by multifunctional metasurfaces[J]. Nanophotonics, 11, 3631-3640(2022).
[67] Guo J Y, Wang X K, He J W et al. Generation of radial polarized Lorentz beam with single layer metasurface[J]. Advanced Optical Materials, 6, 1700925(2018).
[68] Luo L, Chatzakis I, Wang J G et al. Broadband terahertz generation from metamaterials[J]. Nature Communications, 5, 3055(2014).
[69] McDonnell C, Deng J H, Sideris S et al. Functional THz emitters based on Pancharatnam-Berry phase nonlinear metasurfaces[J]. Nature Communications, 12, 30(2021).
[70] Fang M, Niu K K, Huang Z et al. Investigation of broadband terahertz generation from metasurface[J]. Optics Express, 26, 14241-14250(2018).
[71] Minerbi E, Sideris S, Khurgin J B et al. The role of epsilon near zero and hot electrons in enhanced dynamic THz emission from nonlinear metasurfaces[J]. Nano Letters, 22, 6194-6199(2022).
[72] Sideris S, Ellenbogen T. Terahertz generation in parallel plate waveguides activated by nonlinear metasurfaces[J]. Optics Letters, 44, 3590-3593(2019).
[73] Liu C Q, Wang S J, Zhang S et al. Active spintronic-metasurface terahertz emitters with tunable chirality[J]. Advanced Photonics, 3, 056002(2021).
[74] Keren-Zur S, Tal M, Fleischer S et al. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces[J]. Nature Communications, 10, 1778(2019).
[75] Minerbi E, Keren-Zur S, Ellenbogen T. Nonlinear metasurface Fresnel zone plates for terahertz generation and manipulation[J]. Nano Letters, 19, 6072-6077(2019).
[76] Lu Y C, Feng X, Wang Q W et al. Integrated terahertz generator-manipulators using epsilon-near-zero-hybrid nonlinear metasurfaces[J]. Nano Letters, 21, 7699-7707(2021).
[77] Feng X, Chen X Y, Lu Y C et al. Direct emission of focused terahertz vortex beams using indium-tin-oxide-based Fresnel zone plates[J]. Advanced Optical Materials, 11, 2201628(2023).
[78] Feng X, Wang Q W, Lu Y C et al. Direct emission of broadband terahertz cylindrical vector Bessel beam[J]. Applied Physics Letters, 119, 221110(2021).
[79] Wang Q W, Zhang X Q, Xu Q et al. Nonlinear terahertz generation: chiral and achiral meta-atom coupling[J]. Advanced Functional Materials, 33, 23006(2023).
[80] Orazbayev B, Mohammadi Estakhri N, Beruete M et al. Terahertz carpet cloak based on a ring resonator metasurface[J]. Physical Review B, 91, 195444(2015).
[81] Wei M G, Yang Q L, Zhang X Q et al. Ultrathin metasurface-based carpet cloak for terahertz wave[J]. Optics Express, 25, 15635-15642(2017).
[82] Chen P Y, Soric J, Padooru Y R et al. Nanostructured graphene metasurface for tunable terahertz cloaking[J]. New Journal of Physics, 15, 123029(2013).
[83] Li M, Han S, Gan H Y et al. Improvement of wide-angle response for terahertz carpet cloaking by using a metasurface with multilayer microstructure[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 40, 917-928(2019).
[84] Liu S, Cui T J, Zhang L et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 3, 1600156(2016).
[85] Liu S, Zhang L, Yang Q L et al. Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies[J]. Advanced Optical Materials, 4, 1965-1973(2016).
[86] Liu S, Zhang H C, Zhang L et al. Full-state controls of terahertz waves using tensor coding metasurfaces[J]. ACS Applied Materials & Interfaces, 9, 21503-21514(2017).
[87] Zhang L, Liu S, Li L L et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces[J]. ACS Applied Materials & Interfaces, 9, 36447-36455(2017).
[88] Gao L H, Cheng Q, Yang J et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science & Applications, 4, e324(2015).
[89] Liu S, Cui T J, Xu Q et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light: Science & Applications, 5, e16076(2016).
[90] Chen B W, Wang X R, Li W L et al. Electrically addressable integrated intelligent terahertz metasurface[J]. Science Advances, 8, eadd1296(2022).
[91] Liu S, Xu F, Zhan J L et al. Terahertz liquid crystal programmable metasurface based on resonance switching[J]. Optics Letters, 47, 1891-1894(2022).
[92] Fu X J, Shi L, Yang J et al. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces[J]. ACS Applied Materials & Interfaces, 14, 22287-22294(2022).
[93] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014).
[94] Liu C X, Yang F, Fu X J et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals[J]. Advanced Optical Materials, 9, 2100932(2021).
[95] Zhang Y, Li S X, Xu Q et al. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders[J]. Optics Express, 25, 14397-14405(2017).
[96] Yuan M R, Wang Q W, Li Y F et al. Ultra-compact terahertz plasmonic wavelength diplexer[J]. Applied Optics, 59, 10451-10456(2020).
[97] Xu Y H, Zhang X Q, Tian Z et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces[J]. Applied Physics Letters, 107, 021105(2015).
[98] Wang S, Wang X K, Kan Q et al. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons[J]. Applied Physics Letters, 107, 243504(2015).
[99] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[100] Zhang X Q, Xu Y H, Yue W S et al. Anomalous surface wave launching by handedness phase control[J]. Advanced Materials, 27, 7123-7129(2015).
[101] Wei M G, Yang Q L, Xu Q et al. Multi-wavelength lenses for terahertz surface wave[J]. Optics Express, 25, 24872-24879(2017).
[102] Xu Q, Zhang X Q, Xu Y H et al. Polarization-controlled surface plasmon holography[J]. Laser & Photonics Reviews, 11, 1600212(2017).
[103] Xu Q, Zhang X Q, Wei M G et al. Efficient metacoupler for complex surface plasmon launching[J]. Advanced Optical Materials, 6, 1701117(2018).
[104] Zhang X Q, Xu Q, Li Q et al. Asymmetric excitation of surface plasmons by dark mode coupling[J]. Science Advances, 2, e1501142(2016).
[105] Xu Q, Zhang X Q, Yang Q L et al. Polarization-controlled asymmetric excitation of surface plasmons[J]. Optica, 4, 1044-1051(2017).
[106] Tsai W Y, Huang J S, Huang C B. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral[J]. Nano Letters, 14, 547-552(2014).
[107] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).
[108] Quidant R, Girard C. Surface-plasmon-based optical manipulation[J]. Laser & Photonics Reviews, 2, 47-57(2008).
[109] Erhard M, Fickler R, Krenn M et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light: Science & Applications, 7, 17146(2018).
[110] Al-Awfi S. Formation of a plasmonic surface optical vortex by evanescent Bessel light[J]. Plasmonics, 8, 529-536(2013).
[111] Zang X F, Zhu Y M, Mao C X et al. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase[J]. Advanced Optical Materials, 7, 1801328(2019).
[112] Zang X F, Li Z, Zhu Y et al. Geometric metasurface for multiplexing terahertz plasmonic vortices[J]. Applied Physics Letters, 117, 171106(2020).
[113] Lang Y H, Xu Q, Chen X Y et al. On-chip plasmonic vortex interferometers[J]. Laser & Photonics Reviews, 16, 2200242(2022).
[114] Yuan X Y, Xu Q, Lang Y H et al. Tailoring spatiotemporal dynamics of plasmonic vortices[J]. Opto-Electronic Advances, 6, 220133(2023).
[115] Pendry J B, Martín-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 305, 847-848(2004).
[116] Maier S A, Andrews S R, Martín-Moreno L et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires[J]. Physical Review Letters, 97, 176805(2006).
[117] Williams C R, Andrews S R, Maier S A et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces[J]. Nature Photonics, 2, 175-179(2008).
[118] Fernández-Domínguez A I, Moreno E, Martín-Moreno L et al. Guiding terahertz waves along subwavelength channels[J]. Physical Review B, 79, 233104(2009).
[119] Fernández-Domínguez A I, Moreno E, Martín-Moreno L et al. Terahertz wedge plasmon polaritons[J]. Optics Letters, 34, 2063-2065(2009).
[120] Kumar G, Cui A, Pandey S et al. Planar terahertz waveguides based on complementary split ring resonators[J]. Optics Express, 19, 1072-1080(2011).
[121] Kumar G, Pandey S, Cui A et al. Planar plasmonic terahertz waveguides based on periodically corrugated metal films[J]. New Journal of Physics, 13, 033024(2011).
[122] Kumar G, Li S S, Jadidi M M et al. Terahertz surface plasmon waveguide based on a one-dimensional array of silicon Pillars[J]. New Journal of Physics, 15, 085031(2013).
[123] Zhang Y, Xu Y H, Tian C X et al. Terahertz spoof surface-plasmon-polariton subwavelength waveguide[J]. Photonics Research, 6, 18-23(2017).
[124] Yuan M R, Lu Y C, Zhang Y et al. Curved terahertz surface plasmonic waveguide devices[J]. Optics Express, 28, 1987-1998(2020).
[125] Yuan M R, Wang Q W, Li Y F et al. Terahertz spoof surface plasmonic logic gates[J]. iScience, 23, 101685(2020).
[126] Zhang Y, Lu Y C, Yuan M R et al. Rotated Pillars for functional integrated on-chip terahertz spoof surface-plasmon-polariton devices[J]. Advanced Optical Materials, 10, 2102561(2022).
[127] Su X Q, Xu Q, Lu Y C et al. Gradient index devices for terahertz spoof surface plasmon polaritons[J]. ACS Photonics, 7, 3305-3312(2020).
[128] Gu S H, Yuan X Y, Liu L et al. Terahertz spoof surface plasmon polariton gradient index lens[J]. Results in Physics, 47, 106332(2023).
[129] Nadell C C, Huang B H, Malof J M et al. Deep learning for accelerated all-dielectric metasurface design[J]. Optics Express, 27, 27523-27535(2019).
[130] Xu L, Rahmani M, Ma Y X et al. Enhanced light-matter interactions in dielectric nanostructures via machine-learning approach[J]. Advanced Photonics, 2, 026003(2020).
[131] Liu K, Chen X Y, Lian M et al. Nonvolatile reconfigurable electromagnetically induced transparency with terahertz chalcogenide metasurfaces[J]. Laser & Photonics Reviews, 16, 2100393(2022).
[132] Hu Y Z, Tong M Y, Hu S Y et al. Reassessing Fano resonance for broadband, high-efficiency, and ultrafast terahertz wave switching[J]. Advanced Science, 10, 2204494(2023).
[133] Venkatesh S, Lu X Y, Saeidi H et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips[J]. Nature Electronics, 3, 785-793(2020).