• Laser & Optoelectronics Progress
  • Vol. 55, Issue 10, 103005 (2018)
Xu Fanghao1,2, Liu Muhua1,2, Chen Tianbing1,2, Chen Jinyin3..., Luo Ziyi1,2, He Xiuwen1,2, Zhou Huamao1,2, Lin Jinlong1,2 and Yao Mingyin1,2,*|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop55.103005 Cite this Article Set citation alerts
    Xu Fanghao, Liu Muhua, Chen Tianbing, Chen Jinyin, Luo Ziyi, He Xiuwen, Zhou Huamao, Lin Jinlong, Yao Mingyin. Effect of Microwave Probes on Enhancement of Laser-Induced Breakdown Spectral Signal of Leaf Vegetable[J]. Laser & Optoelectronics Progress, 2018, 55(10): 103005 Copy Citation Text show less
    References

    [1] Meng D S, Zhao N J, Ma M J, et al. Rapid soil classification with laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(1): 241-246.

    [2] Wang J M, Yan H Y, Zheng P C, et al. Quantitative detection of nutrient elements in soil based on laser induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(11): 1111002.

    [3] Wang X L, Hong X, Wang H, et al. Study of spectral characteristics and aging performance of room temperature vulcanized silicone rubber using laser-induced breakdown spectroscopy[J]. Proceedings of the CSEE, 2017, 37(10): 2774-2782.

    [4] Yang Y X, Kang J, Wang Y R, et al. Super sensitive detection of lead in water by laser-induced breakdown spectroscopy combined with laser-induced fluorescence technique[J]. Acta Optica Sinica, 2017, 37(11): 1130001.

    [5] Wang Y J, Yuan X Q, Shi B, et al. The research for quantitative analysis of iron in Myanmar jades using laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 263-266.

    [6] Hu Y, Li Z H, Lü T. Quantitative measurement of iron content in geological standard samples by laser-induced breakdown spectroscopy combined with artificial neural network[J]. Laser & Optoelectronics Progress, 2017, 54(5): 053003.

    [7] Lin Q Y, Duan Y X. Laser-induced breakdown spectroscopy: from experimental platform to field instrument[J]. Chinese Journal of Analytical Chemistry, 2017, 45(9): 1405-1414.

    [8] Li A, Wang L W, Guo S, et al. Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy[J]. Chinese Journal of Optics, 2017, 10(5): 619-640.

    [9] Wang J M, Zheng H J, Zheng P C, et al. Spectral characteristics of coptis chinensis plasma induced by orthogonal re-heating double-pulse laser[J]. Chinese Journal of Lasers, 2018, 45(7): 0702006.

    [10] Yu Y, Zhao N J, Fang L, et al. Comparative study on laser induced breakdown spectroscopy based on single pulse and re-heating orthogonal dual pulse[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 588-593.

    [11] Zhou W D, Li K X, Qian H G, et al. Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy[J]. Applied Optics, 2012, 51(7): B42-B48.

    [12] Xu S N, Jiang R, Ning R B, et al. Effect of laser-induced crater on soil plasma radiation characteristics[J]. Chinese Journal of Lasers, 2015, 42(11): 1115005.

    [13] Li C, Gao X, Liu L, et al. Evolution of laser-induced plasma spectrum intensity under magnetic field confinement[J]. Acta Physica Sinica, 2014, 63(14): 145203.

    [14] Iqbal A, Sun Z W, Wall M, et al. Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 136: 16-22.

    [15] Lednev V N, Pershin S M, Sdvizhenskii P A, et al. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing[J]. Analytical and Bioanalytical Chemistry, 2017, 410(1): 277-286.

    [16] Chen T B, Huang L, Yao M Y, et al. Elemental analysis of rice using microwave assisted-laser induced breakdown spectroscopy[J]. Journal of Optoelectronics·Laser, 2016, 27(2): 171-176.

    [17] Tampo M, Miyabe M, Akaoka K, et al. Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(5): 886-892.

    [18] Viljanen J, Sun Z W, Alwahabi Z T. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 118: 29-36.

    [19] Chen S J, Iqbal A, Wall M, et al. Design and application of near-field applicators for efficient microwave-assisted laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(8): 1508-1518.

    [20] Guo S H, Wu B, Zhang L Y, et al. Risk of heavy metal concentration in agricultural product exceeding the safe standard: occurrence process, forewarning and control[J]. Journal of Agro-Environment Science, 2018, 37(1): 1-8.

    [21] Li W B. Detecting heavy metals in leafy vegetables and method of signal enhancement based on laser induced breakdown spectroscopy[D]. Nanchang: Jiangxi Agriculture University, 2015: 28-30.

    [22] Yang H, Huang L, Liu M H, et al. Detection of Cd in Chinese cabbage by laser induced breakdown spectroscopy coupled with multivariable selection[J]. Chinese Journal of Analytical Chemistry, 2017, 45(2): 238-244.

    [23] Wang Q, Chen X L, Wang J G, et al. Research on factors affecting the stability of laser-induced plasmas[J]. Acta Optica Sinica, 2014, 34(6): 0630002.

    [24] Ma Y F, Zhang Q M, Wu B, et al. Measurement method of electromagnetic fields of plasma produced by hypervelocity impact[J]. Transactions of Beijing Institute of Technology, 2011, 31(9): 1118-1121.

    Xu Fanghao, Liu Muhua, Chen Tianbing, Chen Jinyin, Luo Ziyi, He Xiuwen, Zhou Huamao, Lin Jinlong, Yao Mingyin. Effect of Microwave Probes on Enhancement of Laser-Induced Breakdown Spectral Signal of Leaf Vegetable[J]. Laser & Optoelectronics Progress, 2018, 55(10): 103005
    Download Citation