Haojie Hou, Junyan Liu, Bowen Xiao, Mingqi Zhu, Mengchun Li. Formation of Orthogonal and Parallel Surface-Lattice Resonances with Asymmetric Nanoparticle Array[J]. Laser & Optoelectronics Progress, 2019, 56(15): 152501

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 56, Issue 15, 152501 (2019)

Fig. 1. Optical responses of single L-shaped gold nanorod. (a) Schematic of L-shaped gold nanorod; (b) scattering spectrum of nanorod (solid line) and contribution of electric dipole scattering in x and y directions (dashed line); near-field distribution characteristics of (c) anti-bonding and (d) bonding localized surface plasmon resonances; (e) variation in scattering spectrum with length of nanorod; (f) variation in scattering spectrum with width of nanorod; (g) variation in scattering spectrum with

Fig. 2. Optical responses of L-shaped nanoparticle array. (a) Extinction spectrum of L-shaped nanoparticle array under normal incidence when periods in x direction are 1120 nm and 1150 nm and period in y direction is fixed at 1120 nm (inset represents diagram of L-shaped nanoparticle array); (b) transmission spectrum of L-shaped nanoparticle array versus period in x direction

Fig. 3. Electric field intensity distributions (upper) and field component distributions in x (middle) and y (lower) directions at different wavelengths. (a) Wavelength of 1515 nm; (b) wavelength of 1498 nm; (c) wavelength of 1542 nm

Fig. 4. Optical responses of L-shaped nanoparticle array. (a) Extinction spectrum of L-shaped nanoparticle array under normal incidence when periods in x direction are 670 nm and 690 nm and period in y direction is fixed at 690 nm; (b) transmission spectrum of L-shaped nanoparticle array versus period in x direction

Fig. 5. Electric field intensity distributions (upper) and field component distributions in x (middle) and y (lower) directions at different wavelengths. (a) Wavelength of 934 nm; (b) wavelength of 894 nm; (c) wavelength of 927 nm

Set citation alerts for the article
Please enter your email address