Zhiyong Tao, Yalei Hu, Sen Lin. Finger Vein Recognition Based on Improved AlexNet[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081005

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 57, Issue 8, 081005 (2020)

Fig. 1. Image collection method. (a) Direct light collection; (b) light reflection collection

Fig. 2. Finger vein pretreatment process

Fig. 3. Gray scale linear interpolation schematic

Fig. 4. Finger vein effect after CLAHE algorithm processing. (a) Original image; (b) image enhancement

Fig. 5. AlexNet model structure

Fig. 6. Schematic of SPP

Fig. 7. Im-AlexNet model structure renderings

Fig. 8. Curves of JY_DB. (a) Loss curves; (b) recognition accuracy curves

Fig. 9. Curves of SD_DB. (a) Loss curves; (b) recognition accuracy curves
|
Table 1. AlexNet model structure parameters
|
Table 2. Im-AlexNet model structure parameters
![]() |
Table 3. Finger vein datasets division
|
Table 4. Experimental parameters
|
Table 5. Comparison of training time before and after network improvement
|
Table 6. Comparison of recognition accuracy before and after network improvement
|
Table 7. Comparison of recognition accuracy of different image feature algorithms on SD_DB

Set citation alerts for the article
Please enter your email address