• Laser & Optoelectronics Progress
  • Vol. 59, Issue 14, 1415024 (2022)
Yu Zhang1,2, Haoran Li1,2, Cheng Li1, Fei Li1, and Shanshan Wang1,*
Author Affiliations
  • 1Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, Guangdong , China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP202259.1415024 Cite this Article Set citation alerts
    Yu Zhang, Haoran Li, Cheng Li, Fei Li, Shanshan Wang. Combinatorial Reconstruction and Segmentation of Magnetic Resonance Image Using Teacher Forcing[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415024 Copy Citation Text show less
    Framework of the proposed multi-task MRI method
    Fig. 1. Framework of the proposed multi-task MRI method
    The proposed improved teacher forcing scheme (TFS)
    Fig. 2. The proposed improved teacher forcing scheme (TFS)
    Examples of 1D random K-space mask with different acceleration factors. (a) Mask under 4× acceleration; (b) mask under 8× acceleration
    Fig. 3. Examples of 1D random K-space mask with different acceleration factors. (a) Mask under 4× acceleration; (b) mask under 8× acceleration
    Examples of lesion segmentation results and image reconstruction error maps of samples on the ATLAS dataset (acceleration factor is 4), from left to right is annotation, ours, SegNetMRI, U-Net (top) and D5C5 (bottom), SynNet, LI-Net, SERANet
    Fig. 4. Examples of lesion segmentation results and image reconstruction error maps of samples on the ATLAS dataset (acceleration factor is 4), from left to right is annotation, ours, SegNetMRI, U-Net (top) and D5C5 (bottom), SynNet, LI-Net, SERANet
    Violin-plot of the segmentation results on the ATLAS dataset
    Fig. 5. Violin-plot of the segmentation results on the ATLAS dataset
    Boxplot of the segmentation results on the ATLAS dataset
    Fig. 6. Boxplot of the segmentation results on the ATLAS dataset
    Examples of lesion segmentation results and image reconstruction error maps of samples on the in-house dataset (acceleration factor is 4), from left to right is label, ours, SegNetMRI, U-Net (top) and D5C5 (bottom)
    Fig. 7. Examples of lesion segmentation results and image reconstruction error maps of samples on the in-house dataset (acceleration factor is 4), from left to right is label, ours, SegNetMRI, U-Net (top) and D5C5 (bottom)
    MethodDicePrecisionRecallPSNR /dBSSIM
    SynNet0.331±0.0550.473±0.0900.318±0.065
    LI-Net0.338±0.0600.494±0.0950.303±0.060
    SERANet0.353±0.0720.682±0.1260.280±0.060
    SegNetMRI0.224±0.0670.618±0.1640.156±0.03428.22±0.7460.950±0.00600
    U-Net0.451±0.0700.641±0.0850.409±0.075
    D5C528.78±0.6890.958±0.00005
    Ours0.515±0.0670.665±0.0790.490±0.07728.88±0.7630.959±0.00005
    Table 1. Experimental results of different methods on the ATLAS dataset (acceleration factor is 4), bold letters indicate the best result
    MethodDicePrecisionRecallPSNR /dBSSIM
    SynNet0.311±0.0630.506±0.0980.268±0.057
    LI-Net0.312±0.0560.458±0.0950.288±0.059
    SERANet0.303±0.0800.582±0.1510.245±0.065
    SegNetMRI0.081±0.0190.368±0.1970.050±0.00922.96±0.6780.887±0.0001
    U-Net0.420±0.0690.571±0.0930.393±0.075
    D5C522.98±0.6660.888±0.0002
    Ours0.445±0.0730.628±0.0950.407±0.07723.04±0.6100.892±0.0002
    Table 2. Experimental results of different methods on the ATLAS dataset (acceleration factor is 8)
    TFSDicePrecisionRecallPSNR /dBSSIM
    0.494±0.0710.636±0.1350.462±0.06728.78±0.7320.957±0.00005
    0.515±0.0670.665±0.0790.490±0.07728.88±0.7630.959±0.00005
    Table 3. Ablation study on the ATLAS dataset of effectiveness evaluation of the proposed teacher forcing scheme (acceleration factor is 4)
    MethodDicePrecisionRecallPSNR /dBSSIM
    SegNetMRI0.841±0.0040.814±0.0240.859±0.03332.52±0.0570.983±0.006
    U-Net0.854±0.0150.830±0.0070.789±0.107
    D5C532.49±0.0440.984±0.008
    Ours0.864±0.0010.880±0.0110.868±0.03132.65±0.0130.986±0.001
    Table 4. Experimental results of different methods on the in-house dataset (acceleration factor is 4)
    Yu Zhang, Haoran Li, Cheng Li, Fei Li, Shanshan Wang. Combinatorial Reconstruction and Segmentation of Magnetic Resonance Image Using Teacher Forcing[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415024
    Download Citation