• Laser & Optoelectronics Progress
  • Vol. 60, Issue 18, 1811021 (2023)
Longqing Cong†,* and Guizhen Xu1,†
Author Affiliations
  • Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong , China
  • show less
    DOI: 10.3788/LOP231429 Cite this Article Set citation alerts
    Longqing Cong, Guizhen Xu. Toroidal Dipole in Hybrid Bound States in the Continuum[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811021 Copy Citation Text show less
    References

    [1] Luk'yanchuk B, Zheludev N I, Maier S A et al. The fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 9, 707-715(2010).

    [2] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 79, 076401(2016).

    [3] Kuznetsov A I, Miroshnichenko A E, Brongersma M L et al. Optically resonant dielectric nanostructures[J]. Science, 354, aag2472(2016).

    [4] Genevet P, Capasso F, Aieta F et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 4, 139-152(2017).

    [5] Cong L Q. Active terahertz metadevices[J]. Chinese Journal of Lasers, 48, 1914003(2021).

    [6] Xing H Y, Fan J X, Lu D et al. Terahertz metamaterials for free-space and on-chip applications: from active metadevices to topological photonic crystals[J]. Advanced Devices & Instrumentation, 2022, 9852503(2022).

    [7] Xu G Z, Xing H Y, Xue Z Q et al. Recent advances and perspective of photonic bound states in the continuum[J]. Ultrafast Science, 3, 0033(2023).

    [8] Fano U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 124, 1866-1878(1961).

    [9] Limonov M F, Rybin M V, Poddubny A N et al. Fano resonances in photonics[J]. Nature Photonics, 11, 543-554(2017).

    [10] Kaelberer T, Fedotov V A, Papasimakis N et al. Toroidal dipolar response in a metamaterial[J]. Science, 330, 1510-1512(2010).

    [11] Cong L Q, Srivastava Y K, Singh R. Tailoring the multipoles in THz toroidal metamaterials[J]. Applied Physics Letters, 111, 081108(2017).

    [12] Hsu C W, Zhen B, Lee J et al. Observation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).

    [13] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [14] Jin J C, Yin X F, Ni L F et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019).

    [15] Kühner L, Sortino L, Berté R et al. Radial bound states in the continuum for polarization-invariant nanophotonics[J]. Nature Communications, 13, 4992(2022).

    [16] Zhang X D, Liu Y L, Han J C et al. Chiral emission from resonant metasurfaces[J]. Science, 377, 1215-1218(2022).

    [17] Cong L Q, Singh R. Symmetry-protected dual bound states in the continuum in metamaterials[J]. Advanced Optical Materials, 7, 1900383(2019).

    [18] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).

    [19] Fan J X, Li Z L, Xue Z Q et al. Hybrid bound states in the continuum in terahertz metasurfaces[J]. Opto-Electronic Science, 2, 230006(2023).