[1] BELL W E, BLOOM A L. Optical detection of magnetic resonance in alkali metal vapor[J]. Physical Review Journals Archive, 107, 1559-1565(1957).
[2] DEHMELT H G. Modulation of a light beam by precessing absorbing atoms[J]. Physical Review Journals Archive, 105, 1924-1925(1957).
[3] HAPPER W, TANG H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 31, 273-276(1973).
[4] HAPPER W, TAM A C. Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors[J]. Physical Review A, 16, 1877-1891(1977).
[5] ALLRED J C, LYMAN R N, KORNACK T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 89, 130801(2002).
[6] KOMINIS I K, KORNACK T W, ALLRED J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 422, 596-599(2003).
[7] GHOSH R K. Spin exchange optical pumping of neon its applications[D]. Princeton: Princeton University, 2009.
[8] SELTZER S J. Developments in alkalimetal atomic magometry[D]. Princeton: Princeton University, 2008.
[9] LI Z M, WAKAI R T, WALKER T G. Parametric modulation of an atomic magnetometer[J]. Applied Physics Letters, 89, 134105(2006).
[11] DANG H B, MALOOF A C, ROMALIS M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 97, 151110(2010).
[12] CHEMLA Y R, GROSSMAN H L, POON Y, et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 14268-14272(2000).
[13] LEDBETTER M P, SAVUKOV I M, BUDKER D, et al. Zero-field remote detection of NMR with a microfabricated atomic magnetometer[J]. Proceedings of the National Academy of Sciences of the United States of America, 105, 2286-2290(2008).
[14] YOUNG D P, HALL D, TORELLI M E, et al. High-temperature weak ferromagnetism in a low-density free-electron gas[J]. Nature, 397, 412-414(1999).
[15] GUSAROV A, LEVRON D, PAPERNO E, et al. Three-dimensional magnetic field measurements in a single SERF atomic-magnetometer cell[J]. IEEE Transactions on Magnetics, 45, 4478-4481(2009).
[16] GUSAROV A, BARANGA A B A, LEVRON D, et al. Accuracy enhancement of magnetic field distribution measurements within a large cell spin-exchange relaxation-free magnetometer[J]. Measurement Science and Technology, 29, 045209(2018).
[17] GUSAROV A, BARANGA A B A, LEVRON D, et al. Measurement of the spatial magnetic field distribution in a single large spin-exchange relaxation-free vapor cell[J]. Applied Physics B, 125, 19(2019).
[18] KAMADA K, ITO Y, ICHIHARA S, et al. Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations[J]. Optics Express, 23, 6976-6987(2015).
[19] LIU X J, DING M, LI Y, et al. Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer[J]. Chinese Physics B, 27, 073201(2018).
[20] ZHAO J P, LIU G, LU J X, et al. A non-modulated triaxial magnetic field compensation method for spin-exchange relaxation-free magnetometer based on zero-field resonance[J]. IEEE Access, 7, 167557-167565(2019).
[21] ZHAO J P, DING M, LU J X, et al. Determination of spin polarization in spin-exchange relaxation-free atomic magnetometer using transient response[J]. IEEE Transactions on Instrumentation and Measurement, 69, 845-852(2020).
[22] XING B Z, SUN C, LIU Z A, et al. Probe noise characteristics of the spin-exchange relaxation-free (SERF) magnetometer[J]. Optics Express, 29, 5055-5067(2021).
[23] WYLLIE R, KAUER M, SMETANA G S, et al. Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array[J]. Physics in Medicine & Biology, 57, 2619-2632(2012).
[24] ZHIVUN E, BULATOWICZ M, HRYCIUK A, et al. Dual-axis π-pulse magnetometer with suppressed spin-exchange relaxation[J]. Physical Review Applied, 11, 034040(2019).
[25] JOHNSON C, SCHWINDT P D D, WEISEND M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer[J]. Applied Physics Letters, 97, 243703(2010).
[26] GRIFFITH W C, KNAPPE S, KITCHING J. Femtotesla atomic magnetometry in a microfabricated vapor cell[J]. Optics Express, 18, 27167-27172(2010).
[27] KIM K, BEGUS S, XIA H, et al. Multi-channel atomic magnetometer for magnetoencephalography: a configuration study[J]. Neuroimage, 89, 143-151(2014).
[28] BOTO E, HOLMES N, LEGGETT J, et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 555, 657-661(2018).
[29] WU L, SHANG J T, JI Y, et al. Influence of buffer-gas pressure inside micro alkali vapor cells on the performance of chip-scale SERF magnetometers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8, 621-625(2018).
[30] JI Y, SHANG J T, GAN Q, et al. Improvement of sensitivity by using microfabricated spherical alkali vapor cells for chip-scale atomic magnetometers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8, 1715-1722(2018).
[31] ZHANG X, QIN J N, WANG Y Z, et al. A fast identification on the spin-exchange relaxation-free regime of atomic magnetometer exploiting measurement on gyromagnetic ratio[J]. IEEE Transactions on Instrumentation and Measurement, 68, 1157-1164(2019).
[32] FANG X J, WEI K, ZHAO T, et al. High spatial resolution multi-channel optically pumped atomic magnetometer based on a spatial light modulator[J]. Optics Express, 28, 26447-26460(2020).
[33] LIU K N, SHANG J T, ZHANG J, et al. Microfabricated SERF atomic magometers f measurement of weak magic field[C]2020 IEEE 70th Electronic Components Technology Conference (ECTC). lo: IEEE, 2020: 991 996.
[34] LEDBETTER M P, SAVUKOV I M, ACOSTA V M, et al. Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. Physical Review A, 77, 033408(2008).
[35] PATTON B, ZHIVUN E, HOVDE D C, et al. All-optical vector atomic magnetometer[J]. Physical Review Letters, 113, 013001(2014).
[36] FANG J C, WAN S A, QIN J, et al. Spin-exchange relaxation-free magnetic gradiometer with dual-beam and closed-loop Faraday modulation[J]. Journal of the Optical Society of America B, 31, 512-516(2014).
[37] FANG J C, LI R J, DUAN L H, et al. Study of the operation temperature in the spin-exchange relaxation free magnetometer[J]. Review of Scientific Instruments, 86, 073116(2015).
[38] BEVILACQUA G, BIANCALANA V, CHESSA P, et al. Multichannel optical atomic magnetometer operating in unshielded environment[J]. Applied Physics B, 122, 103(2016).
[39] SHENG J W, WAN S A, SUN Y F, et al. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer[J]. Review of Scientific Instruments, 88, 094304(2017).
[40] APPELT S, BARANGA B A, ERICKSON C J, et al. Theory of spin-exchange optical pumping of 3He and 129Xe[J]. Physical Review A, 58, 1412-1439(1998).
[41] LI J D, QUAN W, ZHOU B Q, et al. SERF atomic magnetometer–recent advances and applications: a review[J]. IEEE Sensors Journal, 18, 8198-8207(2018).
[42] ROMALIS M V. Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas[J]. Physical Review Letters, 105, 243001(2010).
[43] ITO Y, OHNISHI H, KAMADA K, et al. Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of k and Rb atoms[J]. IEEE Transactions on Magnetics, 48, 3715-3718(2012).
[44] ITO Y, OHNISHI H, KAMADA K, et al. Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography[J]. AIP Advances, 2, 032127(2012).
[45] ITO Y, OHNISHI H, KAMADA K, et al. Rateequation approach to optimal density ratio of KRb hybrid cells f optically pumped atomic magometers[C]2013 35th Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC). Osaka: IEEE, 2013: 32543257.
[46] ITO Y, SATO D, KAMADA K, et al. Optimal densities of alkali metal atoms in an optically pumped K–Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization[J]. Optics Express, 24, 15391-15402(2016).
[47] FANG J C, WANG T, ZHANG H, et al. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping[J]. Review of Scientific Instruments, 85, 123104(2014).
[48] XING L, QUAN W, FAN W F, et al. Field optimization method of a dual-axis atomic magnetometer based on frequency-response and dynamics[J]. Measurement Science and Technology, 29, 055005(2018).
[49] YAO H, LI Y, MA D Y, et al. Acousto-optic modulation detection method in an all-optical K-Rb hybrid atomic magnetometer using uniform design method[J]. Optics Express, 26, 28682-28692(2018).
[50] LI Y, DING M, LIU X J, et al. Suppression method of AC-stark shift in SERF atomic magnetometer[J]. IEEE Photonics Journal, 10, 5300207(2018).
[51] LI Y, LIU X J, CAI H W, et al. Optimization of the alkali-metal density ratio in a hybrid optical pumping atomic magnetometer[J]. Measurement Science and Technology, 30, 015005(2019).
[52] QUAN W, LIU F, FAN W F. A new method for reduction of atomic magnetometer noise based on multigene genetic programming[J]. IEEE Access, 7, 67438-67445(2019).
[53] KIM Y J, CHU P H, SAVUKOV I. Experimental constraint on an exotic spin- and velocity-dependent interaction in the sub-meV range of axion mass with a spin-exchange relaxation-free magnetometer[J]. Physical Review Letters, 121, 091802(2018).
[54] WANG T, KIMBALL D F J, SUSHKOV A O, et al. Application of spin-exchange relaxation-free magnetometry to the cosmic axion spin precession experiment[J]. Physics of the Dark Universe, 19, 27-35(2018).
[55] FAN W F, QUAN W, ZHANG W J, et al. Analysis on the magnetic field response for nuclear spin co-magnetometer operated in spin-exchange relaxation-free regime[J]. IEEE Access, 7, 28574-28580(2019).
[56] CHU P H, KIM Y J, SAVUKOV I. Search for exotic spin-dependent interactions with a spin-exchange relaxation-free magnetometer[J]. Physical Review D, 94, 036002(2016).
[57] XIA H, BARANGA B A, HOFFMAN D, et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 89, 211104(2006).
[58] ZHANG S L, CAO N. A synthetic optically pumped gradiometer for magnetocardiography measurements[J]. Chinese Physics B, 29, 040702(2020).
[59] COLOMBO A P, CARTER T R, BORNA A, et al. Four-channel optically pumped atomic magnetometer for magnetoencephalography[J]. Optics Express, 24, 15403-15416(2016).
[60] BORNA A, CARTER T R, GOLDBERG J D, et al. A 20-channel magnetoencephalography system based on optically pumped magnetometers[J]. Physics in Medicine & Biology, 62, 8909-8923(2017).
[61] BORNA A, CARTER T R, DEREGO P, et al. Magnetic source imaging using a pulsed optically pumped magnetometer array[J]. IEEE Transactions on Instrumentation and Measurement, 68, 493-501(2019).
[63] ZHANG G Y, HUANG S J, LIN Q. Magnetoencephalography using a compact multichannel atomic magnetometer with pump-probe configuration[J]. AIP Advances, 8, 125028(2018).
[64] LI J J, DU P C, FU J Q, et al. Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography[J]. Chinese Physics B, 28, 040703(2019).
[65] DU P C, LI J J, YANG S J, et al. Observing the steady-state visual evoked potentials with a compact quad-channel spin exchange relaxation-free magnetometer[J]. Chinese Physics B, 28, 040702(2019).
[66] JODKO-WŁADZIŃSKA A, WILDNER K, PAŁKO T, et al. Compensation system for biomagnetic measurements with optically pumped magnetometers inside a magnetically shielded room[J]. Sensors, 20, 4563(2020).