• Chinese Optics Letters
  • Vol. 23, Issue 2, 022201 (2025)
Haitang Li1,2,3, Jin Deng1,3, Junbo Feng4, Lehan Zhao1,3..., Zihan Shen1,2,3, Guangqiong Xia1,3, Zhengmao Wu1,4, Jiagui Wu1,3,* and Junbo Yang2,**|Show fewer author(s)
Author Affiliations
  • 1School of Physical Science and Technology, Southwest University, Chongqing 400715, China
  • 2Center of Material Science, National University of Defense Technology, Changsha 410073, China
  • 3Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China
  • 4Microelectronics Center Co., Ltd., Chongqing 401332, China
  • show less
    DOI: 10.3788/COL202523.022201 Cite this Article Set citation alerts
    Haitang Li, Jin Deng, Junbo Feng, Lehan Zhao, Zihan Shen, Guangqiong Xia, Zhengmao Wu, Jiagui Wu, Junbo Yang, "Single-point tunable and non-volatile Y-junction photonic power splitter on SOI with broadband and low loss," Chin. Opt. Lett. 23, 022201 (2025) Copy Citation Text show less
    References

    [1] J. Zhu, Q. Chao, H. Huang et al. Compact, broadband, and low-loss silicon photonic arbitrary ratio power splitter using adiabatic taper. Appl. Opt., 60, 413(2021).

    [2] Z. Wang, Z. Peng, Y. Zhang et al. 93-THz ultra-broadband and ultra-low loss Y-junction photonic power splitter with phased inverse design. Opt. Express, 31, 15904(2023).

    [3] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photon., 11, 465(2017).

    [4] L. Waldecker, T. A. Miller, M. Rudé et al. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater., 14, 991(2015).

    [5] S. Zhou, Z. Wang, J. Nong et al. Optimized wideband and compact multifunctional photonic device based on SB2S3 phase change material. Opt. Express, 32, 8506(2024).

    [6] Z. Peng, J. Feng, H. Yuan et al. A non-volatile tunable ultra-compact silicon photonic logic gate. Nanomaterials, 12, 1121(2022).

    [7] C. Zhang, M. Zhang, Y. Xie et al. Wavelength-selective 2 × 2 optical switch based on a Ge2Sb2Te5-assisted microring. Photon. Res., 8, 1171(2020).

    [8] Z. Zhang, J. Yang, W. Bai et al. All-optical switch and logic gates based on hybrid silicon-Ge2Sb2Te5 metasurfaces. Appl. Opt., 58, 7392(2019).

    [9] P. Xu, J. Zheng, J. K. Doylend et al. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photon., 6, 553(2019).

    [10] Z. Wang, J. Feng, Z. Peng et al. Ultra-high density and nonvolatile nanophotonic convolution processing unit. Res. Phys., 55, 107198(2023).

    [11] Q. Wang, E. T. Rogers, B. Gholipour et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon., 10, 60(2016).

    [12] Z. Peng, J. Feng, T. Du et al. Ultra-compact and low loss silicon-photonic rearrangeable non-blocking perfect shuffle-exchange network. Optik, 269, 169884(2022).

    [13] H. Yuan, Z. Wang, Z. Peng et al. Ultra–compact and nonvolatile nanophotonic neural networks. Adv. Opt. Mater., 11, 2300215(2023).

    [14] J. Feldmann, N. Youngblood, M. Karpov et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52(2021).

    [15] K. Kato, M. Kuwahara, H. Kawashima et al. Current-driven phase-change optical gate switch using indium–tin–oxide heater. Appl. Phys. Express, 10, 072201(2017).

    [16] Y. Zhang, J. Li, J. Chou et al. CLEO: Science and Innovations(2017).

    [17] Y. Zhang, J. B. Chou, J. Li et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun., 10, 4279(2019).

    [18] H. Yuan, J. Wu, J. Zhang et al. Non-volatile programmable ultra-small photonic arbitrary power splitters. Nanomaterials, 12, 669(2022).

    [19] Y.-Y. Zhang, X.-L. Wei, J. Nong et al. Ultra-compact In2Se3 tunable power splitter based on direct binary search algorithm. Acta Phys. Sin., 72, 154207(2023).

    [20] C. Song, Y. Gao, G. Wang et al. Compact nonvolatile 2 × 2 photonic switch based on two-mode interference. Opt. Express, 30, 30430(2022).

    [21] Q. Meng, X. Chen, W. Xu et al. High Q resonant graphene absorber with lossless phase change material Sb2S3. Nanomater., 11, 2820(2021).

    [22] M. Shadi, M. R. Tavakol, Z. Atlasbaf. Inverse design of compact power divider with arbitrary outputs for 5G applications. Sci. Rep., 12, 12844(2022).

    [23] K. Wang, X. Ren, W. Chang et al. Inverse design of digital nanophotonic devices using the adjoint method. Photon. Res., 8, 528(2020).

    [24] B. Shen, P. Wang, R. Polson et al. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint. Nat. Photon., 9, 378(2015).

    [25] L. Lu, D. Liu, F. Zhou et al. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures. Opt. Lett., 41, 5051(2016).

    [26] M. Delaney, I. Zeimpekis, D. Lawson et al. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater., 30, 202002447(2020).

    [27] C. Wu, H. Yu, S. Lee et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun., 12, 96(2021).

    [28] K. Gao, K. Du, S. Tian et al. Intermediate phase–change states with improved cycling durability of Sb2S3 by femtosecond multi–pulse laser irradiation. Adv. Funct. Mater., 31, 2103327(2021).

    Haitang Li, Jin Deng, Junbo Feng, Lehan Zhao, Zihan Shen, Guangqiong Xia, Zhengmao Wu, Jiagui Wu, Junbo Yang, "Single-point tunable and non-volatile Y-junction photonic power splitter on SOI with broadband and low loss," Chin. Opt. Lett. 23, 022201 (2025)
    Download Citation