• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 5, 050003 (2024)
Kewen WANG1,2, Juan HUANG1,*, Jiafeng CHANG1,**, and Ruijie ZHOU1
Author Affiliations
  • 1Institute of Plasma Physics, Hefei Institutes of Physics Science, Chinese Academy of Sciences, Hefei 230026, China
  • 2University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.050003 Cite this Article
    Kewen WANG, Juan HUANG, Jiafeng CHANG, Ruijie ZHOU. Simulation analysis of fast electron response of ZnS(Ag) scintillator in EAST[J]. NUCLEAR TECHNIQUES, 2024, 47(5): 050003 Copy Citation Text show less
    References

    [1] Artsimovich L A. Tokamak devices[J]. Nuclear Fusion, 12, 215-252(1972).

    [2] Breizman B N, Aleynikov P, Hollmann E M et al. Physics of runaway electrons in tokamaks[J]. Nuclear Fusion, 59, 083001(2019).

    [3] Martín-Solís J R, Esposito B, Sánchez R et al. Comparison of runaway dynamics in LH and ECRH heated discharges in the Frascati Tokamak Upgrade[J]. Nuclear Fusion, 45, 1524-1533(2005).

    [4] Bolt H, Miyahara A, Miyake M et al. Simulation of tokamak runaway-electron events[J]. Journal of Nuclear Materials, 151, 48-54(1987).

    [5] Kwiatkowski R, Rabinski M, Sadowski M J et al. Cherenkov probes and runaway electrons diagnostics[J]. The European Physical Journal Plus, 136, 1070(2021).

    [6] Causa F, Buratti P, Esposito B et al. Cherenkov emission provides detailed picture of non-thermal electron dynamics in the presence of magnetic islands[J]. Nuclear Fusion, 55, 123021(2015).

    [7] Hoppe M, Hesslow L, Embreus O et al. Spatiotemporal analysis of the runaway distribution function from synchrotron images in an ASDEX Upgrade disruption[J]. Journal of Plasma Physics, 87, 855870102(2021).

    [8] Cheon M S, Seo D, Kim J. Observation of thermal quench induced by runaway electrons in magnetic perturbation[J]. Nuclear Fusion, 58, 046020(2018).

    [9] Wu S, EAST Team. An overview of the EAST project[J]. Fusion Engineering and Design, 82, 463-471(2007).

    [10] WEN Xiaodong, XU Liqing, HU Liqun et al. Sawtooth behavior of EAST plasma under ICRF heating[J]. Nuclear Techniques, 46, 010502(2023).

    [11] Lu H W, Hu L Q, Li Y D et al. Investigation of fast pitch angle scattering of runaway electrons in the EAST tokamak[J]. Chinese Physics B, 19, 125201(2010).

    [12] Lu H W, Hu L Q, Lin S Y et al. Runaway electron measurements in the EAST tokamak[J]. Contributions to Plasma Physics, 50, 141-145(2010).

    [13] Agostinelli S, Allison J, Amako K et al. GEANT4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250-303(2003).

    [14] WU Chengrui. Study of recycling and impurity behavior in long-pulse H-mode discharges in EAST tokamak[D](2019).

    [15] WANG Shusong, HUANG Juan, CHANG Jiafeng et al. Preliminary study of velocity-space distribution of fast-ion loss under ion cyclotron resonance heating in the EAST[J]. Nuclear Techniques, 46, 120601(2023).

    [16] CHEN Boxian, ZHANG Zhi[M]. Physics and detection of nuclear radiation(2011).

    [17] Klein C A. Room-temperature dispersion equations for cubic zinc sulfide[J]. Applied Optics, 25, 1873-1875(1986).

    [18] ZHOU Ruijie. Experimental study on runaway electrons dynamics in tokamak[D](2013).

    [19] Sykora G J, Schooneveld E M, Rhodes N J. ZnO: Zn/6LiF scintillator—a low afterglow alternative to ZnS: Ag/6LiF for thermal neutron detection[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 883, 75-82(2018).

    [20] Zhou R J, Hu L Q, Li E Z et al. Investigation of ring-like runaway electron beams in the EAST tokamak[J]. Plasma Physics and Controlled Fusion, 55, 055006(2013).

    Kewen WANG, Juan HUANG, Jiafeng CHANG, Ruijie ZHOU. Simulation analysis of fast electron response of ZnS(Ag) scintillator in EAST[J]. NUCLEAR TECHNIQUES, 2024, 47(5): 050003
    Download Citation