[3] ZHANG F, LIU S Y, WANG K F, et al. Brief discussion on energy saving of building sanitary ceramic kiln[J]. IOP Conf Ser: Earth Environ Sci, 2020, 526(1): 012107.
[6] ALEM S A A, LATIFI R, ANGIZI S, et al. Microwave sintering of ceramic reinforced metal matrix composites and their properties: A review[J]. Mater Manuf Process, 2020, 35(3): 303-327.
[7] SEVGI CANARSLAN , ROSA R, KROLU L, et al. Microwave sintering of SiAlON ceramics with TiN addition[J]. Materials, 2019, 12(8): 1345.
[8] GUNNEWIEK R F K, KIMINAMI R H G A. Effect of heating rate on microwave sintering of nanocrystalline zinc oxide[J]. Ceram Int, 2014, 40(7): 10667-10675.
[9] EGOROV S V, EREMEEV A G, KHOLOPTSEV V V, et al. Rapid microwave sintering of gadolinia-doped ceria[J]. Materialia, 2024, 33: 101980.
[10] RDIGER K, DREYER K, GERDES T, et al. Microwave sintering of hardmetals[J]. Int J Refract Met Hard Mater, 1998, 16(4/6): 409-416.
[11] SHARMA A, KARUNAKAR D B. Development and investigation of densification behavior of ZrB2-SiC composites through microwave sintering[J]. Mater Res Express, 2019, 6(10): 105072.
[12] YANG M, WANG H L, CHEN R C, et al. Comparison of the microwave and conventional sintering of Li2TiO3 ceramic pebbles[J]. Ceram Int, 2018, 44(16): 19672-19677.
[13] REIDY C J, FLEMING T J, HAMPSHIRE S, et al. Comparison of microwave and conventionally sintered yttria-doped zirconia ceramics[J]. Int J Appl Ceram Technol, 2011, 8(6): 1475-1485.
[14] DEMIRSKYI D, AGRAWAL D, RAGULYA A. Comparisons of grain size-density trajectory during microwave and conventional sintering of titanium nitride[J]. J Alloys Compd, 2013, 581: 498-501.
[15] JAIN H, GHOSH S, NITSURE N. Moulding three-dimensional curved structures by selective heating[J]. R Soc Open Sci, 2020, 7(2): 200011.
[16] ZHOU Y Y, LIU J C, SUN F Y, et al. Incorporating metal nanoparticles in porous materials via selective heating effect using microwave[J]. Nano Res, 2024, 17(4): 3175-3179.
[17] LEE C S, BINNER E, WINKWORTH-SMITH C, et al. Enhancing natural product extraction and mass transfer using selective microwave heating[J]. Chem Eng Sci, 2016, 149: 97-103.
[18] FAN F Y, XU J, YANG R W, et al. Enhanced thermal insulation and mechanical properties of Y--SiAlON porous ceramics with Sr doping[J]. J Mater Res Technol, 2023, 25: 6074-6086.
[19] GUO J, XU J, YANG R W, et al. Effect of composition on the dielectric properties and thermal conductivity of -SiAlON ceramics[J]. J Mater Sci Mater Electron, 2022, 33(28): 22480-22491.
[20] CHEN Z H, DUAN W Y, ZHANG D Y, et al. Fabrication of broadband wave-transparent Si3N4 ceramics with octet-truss lattice structure by vat photopolymerization 3D printing technology[J]. J Eur Ceram Soc, 2024, 44(4): 2026-2036.
[21] WANG K J, LIU R Z, XU H M. High-strength and wave-transmitting Si3N4-Si2N2O-BN composites prepared using selective laser sintering[J]. Ceram Int, 2022, 48(14): 20126-20133.
[22] KANDI K K, PUNUGUPATI G, MADHUKAR P, et al. Influence of silicon nitride (Si3N4) on mechanical and dielectric properties of a novel fused silica ceramic composites[J]. Silicon, 2022, 14(13): 7503-7516.
[23] WANG S, LUO F, GUO J, et al. Effect of preparation conditions on mechanical, dielectric and wave-transparent properties of Al2O3f/mullite composites[J]. J Mater Sci Mater Electron, 2022, 33(25): 20317-20327.
[24] ZHANG L F, OLHERO S, FERREIRA J M F. Thermo-mechanical and high-temperature dielectric properties of cordierite-mullite-alumina ceramics[J]. Ceram Int, 2016, 42(15): 16897-16905.
[25] AMAN B, ACHARYA S, REEJA-JAYAN B. Making the case for scaling up microwave sintering of ceramics[J]. Adv Eng Mater, 2024, 26(9): 2302065.
[26] CHAIX J M, BOUCHET R, BOUVARD D, et al. A viewpoint on hot spots in microwave sintering and flash sintering[J]. Adv Eng Mater, 2023, 25(18): 2201742.
[27] CROQUESEL J, BOUVARD D, CHAIX J M, et al. Direct microwave sintering of pure alumina in a single mode cavity: Grain size and phase transformation effects[J]. Acta Mater, 2016, 116: 53-62.
[28] WEI Z J, BLACKBURN L R, GARDNER L J, et al. Rapid synthesis of zirconolite ceramic wasteform by microwave sintering for disposition of plutonium[J]. J Nucl Mater, 2020, 539: 152332.
[29] EGOROV S V, EREMEEV A G, KHOLOPTSEV V V, et al. Rapid microwave sintering of functional electroceramic materials[J]. Ceram Int, 2023, 49(14): 24222-24228.
[30] CHEN Y Q, FAN B B, SHAO G, et al. Preparation of large size ZTA ceramics with eccentric circle shape by microwave sintering[J]. J Adv Ceram, 2016, 5(4): 291-297.
[31] ABEDINZADEH R, SAFAVI S M, KARIMZADEH F. A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite[J]. J Mech Sci Technol, 2016, 30(5): 1967-1972.
[32] GUNNEWIEK R F K, KIMINAMI R H G A. Fast synthesis of porous chromium carbide by microwave-assisted carbothermal reduction[J]. Ceram Int, 2017, 43(13): 10614-10618.
[33] KUMAR M, PHASE D M, CHOUDHARY R J, et al. Microwave assisted radiant hybrid sintering of YMnO3 ceramic: Reduction of microcracking and leakage current[J]. Ceram Int, 2018, 44(7): 8196-8200.
[34] HONG D B, YUAN J T, YIN Z B, et al. Ultrasonic-assisted preparation of complex-shaped ceramic cutting tools by microwave sintering[J]. Ceram Int, 2020, 46(12): 20183-20190.
[35] KERBART G, HARNOIS C, BILOT C, et al. Pressure-assisted microwave sintering: A rapid process to sinter submicron sized grained MgAl2O4 transparent ceramics[J]. J Eur Ceram Soc, 2019, 39(9): 2946-2951.
[36] LI X, CHEN B, QIAO J, et al. Low-temperature synthesis and sinterability of high-purity submicron TiB2 powder via microwave-assisted carbothermal reduction[J]. J Eur Ceram Soc, 2024, 44(7): 4549-4557.
[37] LI Q N, HAO X D, GUI Y X, et al. Controlled sintering and phase transformation of yttria-doped tetragonal zirconia polycrystal material[J]. Ceram Int, 2021, 47(19): 27188-27194.
[38] HUANG W W, ZHANG Y Q, LU J J, et al. Effect of sintering time on the microstructure and stability of Al2O3-ZrO2 composite powders under microwave-assisted sintering[J]. Ceram Int, 2023, 49(6): 8993-8999.
[39] TANG L, ZHANG J L, TANG Y S, et al. Polymer matrix wave-transparent composites: A review[J]. J Mater Sci Technol, 2021, 75: 225-251.
[42] LI D X, JIA D C, YANG Z H, et al. Principles, design, structure and properties of ceramics for microwave absorption or transmission at high-temperatures[J]. Int Mater Rev, 2022, 67(3): 266-297.
[43] YIN X W, KONG L, ZHANG L T, et al. Electromagnetic properties of Si-C-N based ceramics and composites[J]. Int Mater Rev, 2014, 59(6): 326-355.
[45] SHANG X B, ZHANG F C, ZHAI D, et al. Microwave transmission performance of mullite refractory ceramics over wide temperature range at 915MHz and 2450MHz[J]. Mater Chem Phys, 2021, 258: 123898.
[46] WANG X J, WANG X X, NIU X H, et al. Effects of pore complex shape, distribution and overlap on the thermal conductivity of porous insulation materials[J]. Int J Thermophys, 2020, 41(10): 145.
[47] JIN H Z, YANG Z H, ZHONG J, et al. Mechanical and dielectric properties of 3D printed highly porous ceramics fabricated via stable and durable gel ink[J]. J Eur Ceram Soc, 2019, 39(15): 4680-4687.
[49] LIANG H Q, ZENG Y P, ZUO K H, et al. The effect of oxidation on the mechanical properties and dielectric properties of porous Si3 N4 ceramics[J]. Ceram Int, 2017, 43(7): 5517-5523.
[50] REN Y H, ZHANG B, SHAO J D, et al. Sintering behavior and morphology control of porous Al2O3-SiO2 ceramics for radome applications[J]. Int J Appl Ceram Technol, 2022, 19(5): 2489-2499.
[51] ZHAI D, WEI C, ZHANG F C, et al. Microwave transmission performance of fused silica ceramics in microwave high-temperature heating[J]. Ceram Int, 2019, 45(5): 6157-6162.
[52] BERGMANN F, JUNGWIRTH N R, BOSWORTH B T, et al. Measuring the permittivity of fused silica with planar on-wafer structures up to 325 GHz[J]. Appl Phys Lett, 2024, 124(7): 072902.
[53] SUN G X, BI J Q, WANG W L, et al. Microstructure and mechanical properties of boron nitride nanosheets-reinforced fused silica composites[J]. J Eur Ceram Soc, 2017, 37(9): 3195-3202.
[54] HUANG M, PENG Z H, ZHANG W, et al. Fabrication and characterization of Si3N4 whisker-reinforced SiO2 ceramic for radome materials[J]. Int J Appl Ceram Technol, 2022: 2916-2924.
[55] WAN W, FENG Y B, YANG J, et al. Microstructure, mechanical and high-temperature dielectric properties of zirconia-reinforced fused silica ceramics[J]. Ceram Int, 2016, 42(5): 6436-6443.
[56] YIN S, ZHANG Y, MA H Q, et al. Effect of solid loading on phase composition, microstructure, mechanical and dielectric properties of fused silica ceramics by gecasting[J]. Ceram Int, 2024, 50(2): 3940-3949.
[57] DUAN W J, YANG H L, YANG Z H, et al. The microstructural evolution, mechanical and dielectric properties of BNW/SiO2 ceramics[J]. Ceram Int, 2023, 49(8): 11968-11977.
[58] TONG Z W, YAN X J, WANG Y X, et al. Lightweight Si3N4@SiO2 ceramic foam for thermal insulation and electromagnetic wave transparency[J]. Nano Res, 2024, 17(5): 4298-4306.
[59] HUANG M, PENG Z H, ZHANG W, et al. Influence of -Si3N4 whiskers on sintering and crystallization of fused silica ceramics[J]. J Am Ceram Soc, 2023, 106(2): 967-976.
[60] LIU J, WANG Q H, LI Y W, et al. Inhibiting crystallization of fused silica ceramic at high temperature with addition of -Si3N4[J]. Ceram Int, 2021, 47(8): 11394-11404.
[61] SUN G X, WANG W L, BI J Q. High-temperature mechanical behavior of boron nitride nanosheets/fused silica composites[J]. Ceram Int, 2020, 46(18): 29330-29333.
[62] LIANG J J, LIN Q H, ZHANG X, et al. Effects of alumina on cristobalite crystallization and properties of silica-based ceramic cores[J]. J Mater Sci Technol, 2017, 33(2): 204-209.
[63] SUI H, ZHANG H, GAO L F, et al. Boron and nitrogen doping in fused silica ceramics: Structural, high-temperature mechanical and long-term ablation resistance properties of Si-B-O-N ceramics[J]. Silicon, 2024, 16(12): 5147-5159.
[64] PENG Z W, HWANG J Y. Microwave-assisted metallurgy[J]. Int Mater Rev, 2015, 60(1): 30-63.
[65] DONG G Y, LI W. Microwave dielectric properties of Al2O3 ceramics sintered at low temperature[J]. Ceram Int, 2021, 47(14): 19955-19958.
[66] GENG H T, HU X X, ZHOU J Y, et al. Fabrication and compressive properties of closed-cell alumina ceramics by binding hollow alumina spheres with high-temperature binder[J]. Ceram Int, 2016, 42(14): 16071-16076.
[67] DI MARCO D, DRISSI K, DELHOTE N, et al. Dielectric properties of pure alumina from 8 GHz to 73 GHz[J]. J Eur Ceram Soc, 2016, 36(14): 3355-3361.
[68] JENKEL K D, SNCHEZ-PASTOR J, BALOOCHIAN M M, et al. Effect of sintering temperature on the dielectric properties of 3D-printed alumina (Al2O3) in the W-band[J]. J Am Ceram Soc, 2024, 107(4): 2494-2503.
[69] YAN X Y, ZHU H, ZHOU H B, et al. Effect of CeMgAl11O19 addition on mechanical and dielectric properties of alumina ceramics for HTCC application[J]. J Mater Sci Mater Electron, 2022, 33(32): 24761-24768.
[70] SHANG X B, ZHAI D, ZHANG F C, et al. Electromagnetic waves transmission performance of alumina refractory ceramics in 2.45GHz microwave heating[J]. Ceram Int, 2019, 45(17): 23493-23500.
[71] SHANG X B, CHEN J R, PENG J H. Dynamic transmission performances of alumina and mullite refractory ceramics in microwave high-temperature heating[J]. High Temp Mater Process, 2016, 35(1): 113-119.
[72] CHATTERJEE A, BASAK T, AYAPPA K G. Analysis of microwave sintering of ceramics[J]. AlChE J, 1998, 44(10): 2302-2311.
[73] FLORIO J V. Dielectric properties of alumina at high temperatures[J]. J Am Ceram Soc, 1960, 43(5): 262-267.
[77] DA SILVA V J, DE ALMEIDA E P, GONALVES W P, et al. Mineralogical and dielectric properties of mullite and cordierite ceramics produced using wastes[J]. Ceram Int, 2019, 45(4): 4692-4699.
[78] OKAMURA T, KISHINO T. Dielectric properties of rare-earth-added cordierite at microwave and millimeter wave frequencies[J]. Jpn J Appl Phys, 1998, 37(9S): 5364.
[79] YUAN L, MA B Y, ZHU Q, et al. Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process[J]. Ceram Int, 2017, 43(7): 5478-5483.
[80] ZHANG B, MA J, YE J, et al. Ultra-low cost porous mullite ceramics with excellent dielectric properties and low thermal conductivity fabricated from Kaolin for radome applications[J]. Ceram Int, 2019, 45(15): 18865-18870.
[81] REN Y H, ZHANG B, ZHONG Z X, et al. A simple and efficient hydratable alumina gel-casting method for the fabrication of high-porosity mullite ceramics[J]. J Am Ceram Soc, 2024, 107(4): 2067-2080.
[82] REN Y X, DAI F Z, XIANG H M, et al. Preparation and properties of porous Al5BO9 for high-temperature wave-transparent and thermal insulating applications[J]. Int J Appl Ceram Technol, 2022, 19(2): 866-875.
[87] MAHNICKA-GOREMIKINA L, SVINKA R, SVINKA V. Influence of ZrO2 and WO3 doping additives on the thermal properties of porous mullite ceramics[J]. Ceram Int, 2018, 44(14): 16873-16879.
[88] GUO T S, LIU Z L, YU C, et al. Effect of pore structure evolution on mechanical properties and thermal conductivity of porous SiC-mullite ceramics[J]. Ceram Int, 2023, 49(21): 33618-33627.
[89] SANAD M M S, RASHAD M M, ABDEL-AAL E A, et al. Mechanical, morphological and dielectric properties of sintered mullite ceramics at two different heating rates prepared from alkaline monophasic salts[J]. Ceram Int, 2013, 39(2): 1547-1554.
[90] JIN H, SHI Z Q, LI X D, et al. Effect of rare earth oxides on the microstructure and properties of mullite/hBN composites[J]. Ceram Int, 2017, 43(3): 3356-3362.
[91] ZHANG H Q, LIU Q, ZHANG B, et al. A comparative study on dielectric and mechanical properties of porous -Si3N4 ceramics by controlling porosity and microstructure[J]. J Eur Ceram Soc, 2022, 42(3): 905-912.
[92] QIAO J, WEN Y B. Mechanical and dielectric properties of porous magnesium aluminate (MgAl2O4) spinel ceramics fabricated by direct foaming-gelcasting[J]. Ceram Int, 2020, 46(2): 1442-1447.
[93] DUAN W J, JIA D C, CAI D L, et al. Effects of pore structures on the dielectric properties of silicon nitride-based ceramics[J]. J Eur Ceram Soc, 2020, 40(15): 6223-6228.
[94] LI X M, ZHANG L T, YIN X W. Effect of chemical vapor deposition of Si3N4, BN and B4C coatings on the mechanical and dielectric properties of porous Si3N4 ceramic[J]. Scr Mater, 2012, 66(1): 33-36.
[95] NIU B, CAI D L, YANG Z H, et al. Reducing high-temperature dielectric loss of h-BN ceramics by orienting grains[J]. Scr Mater, 2023, 223: 115098.
[96] LU Z Y, GENG H R, ZHANG M X, et al. Preparation of aluminum borate whisker reinforced aluminum phosphate wave-transparent materials[J]. Chin Sci Bull, 2008, 53(19): 3073-3076.
[97] MO J, ZHANG L X, HU C, et al. Fabrication of submicron grained alumina transparent ceramics with high bending strength and low dielectric loss[J]. Ceram Int, 2024, 50(16): 28301-28308.
[98] DING D H, ZHOU W C, LUO F, et al. The effects of CVD SiC interphase on mechanical properties of KD-1 SiC fiber reinforced aluminum phosphate composites[J]. Mater Sci Eng A, 2012, 534: 347-352.
[100] CHEN N, WANG H B, HUO J C, et al. Preparation and properties of in situ mullite whiskers reinforced aluminum chromium phosphate wave-transparent ceramics[J]. J Eur Ceram Soc, 2017, 37(15): 4793-4799.
[101] ZHAO Z F, XIANG H M, DAI F Z, et al. On the potential of porous ZrP2O7 ceramics for thermal insulating and wave-transmitting applications at high temperatures[J]. J Eur Ceram Soc, 2020, 40(3): 789-797.
[102] LI M H, TANG H, LI J W, et al. Preparation of ZrP2O7-CePO4 composite porous ceramics and their excellent thermal insulation and wave-transmission performance for supersonic aircraft[J]. J Eur Ceram Soc, 2024, 44(6): 4232-4242.
[103] LU Y C, XIE H X, MENG T Y, et al. Preparation and properties of silicon nitride-phosphate composites for application in microwave furnace[J]. Ceram Int, 2022, 48(9): 12324-12330.
[104] SUN H G, LI H X, GENG K M, et al. Spalling degradation of Cr2O3-Al2O3-ZrO2 refractories for coal-water slurry gasifier linings: Role of phosphate[J]. Int J Appl Ceram Technol, 2022, 19(4): 2181-2193.
[105] CAO X Q, ZHAO K L, WANG L, et al. Robust, thermally insulating, and high-temperature resistant phosphate-enhanced mullite fiber porous ceramic composites[J]. Ceram Int, 2024, 50(13): 23733-23743.
[106] LI L, FANG Y, XIAO Q, et al. Microwave dielectric properties of fused silica prepared by different approaches[J]. Int J Appl Ceram Technol, 2014, 11(1): 193-199.
[107] WAN W, YANG J, FENG Y B, et al. Effect of trace alumina on mechanical, dielectric, and ablation properties of fused silica ceramics[J]. J Alloys Compd, 2016, 675: 64-72.
[108] DI MARCO D, DRISSI K, GEFFROY P M, et al. Dielectric properties of alumina doped with TiO2 from 13 to 73 GHz[J]. J Eur Ceram Soc, 2017, 37(2): 641-646.
[109] NJOYA D, ELIMBI A, FOUEJIO D, et al. Effects of two mixtures of Kaolin-talc-bauxite and firing temperatures on the characteristics of cordierite-based ceramics[J]. J Build Eng, 2016, 8: 99-106.
[110] AKPNAR S. Influence of dispersing agents on microstructure-related properties of slip cast cordierite ceramics[J]. Ceram Int, 2019, 45(12): 15488-15495.
[111] BISWAL B, MISHRA D K, DAS S N, et al. Structural, micro-structural, optical and dielectric behavior of mullite ceramics[J]. Ceram Int, 2021, 47(22): 32252-32263.
[113] CHENG Z W, LI X T, YUAN S T, et al. Fabrication of ultralight heat-insulating hollow-fiber mullite fiberboards[J]. Ceram Int, 2021, 47(21): 29576-29583.
[114] SHANG X B, ZHAI D, LIU M H, et al. Dielectric properties and electromagnetic wave transmission performance of aluminium silicate fibreboard at 915MHz and 2450MHz[J]. Ceram Int, 2021, 47(6): 7539-7557.
[115] XIAO L P, SHANG X B, LIU M H, et al. Dielectric properties and electromagnetic wave transmission performance of high-Al aluminum silicate fiberboard[J]. J Chin Ceram Soc, 2021, 49(12): 2621-2628.
[116] ZHAI D, ZHANG F C, WEI C, et al. Dielectric properties and electromagnetic wave transmission performance of polycrystalline mullite fiberboard at 2.45GHz[J]. Ceram Int, 2020, 46(6): 7362-7373.
[120] PETIT C, MEUNIER C, MANCEAUX L, et al. Fused Deposition Modeling and microwave sintering of 3Y-TZP samples[J]. Open Ceram, 2023, 15: 100378.
[121] CANARSLAN S, KOROGLU L, AYAS E, et al. Susceptor-assisted fast microwave sintering of TiN reinforced SiAlON composites in a single mode cavity[J]. Ceram Int, 2021, 47(1): 828-835.
[122] MACAIGNE R, MARINEL S, GOEURIOT D, et al. Sintering paths and mechanisms of pure MgAl2O4 conventionally and microwave sintered[J]. Ceram Int, 2018, 44(17): 21107-21113.
[123] HAN Y X, FENG J Y, ZHOU J, et al. Heating parameter optimization and optical properties of Nd: YAG transparent ceramics prepared by microwave sintering[J]. Ceram Int, 2020, 46(13): 20847-20855.
[124] ZUBASHCHENKO R V. Experience in using aluminum-silicate fiber based heat-resistant thermal insulation in heating assembly linings in the ceramic industry[J]. Glass Ceram, 2017, 74(5): 209-211.
[125] TAKAHASHI N, HASHIMOTO S, DAIKO Y, et al. High-temperature shrinkage suppression in refractory ceramic fiber board using novel surface coating agent[J]. Ceram Int, 2018, 44(14): 16725-16731.
[126] WANG J H, CHENG L F, YE F, et al. Amorphous/nanocrystalline, lightweight, wave-transparent boron nitride nanobelt aerogel for thermal insulation[J]. ACS Appl Mater Interfaces, 2023, 15(40): 47405-47414.
[127] SI Y, WANG X Q, DOU L Y, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Sci Adv, 2018, 4(4): eaas8925.
[129] YU Y X, LI L, HUANG Y J, et al. Preparation and properties of low-density and high-temperature resistant yttrium doped silica aerogels[J]. J Non Cryst Solids, 2022, 590: 121572.
[130] SONG Z J, ZHANG F, JIANG K X, et al. Preparation of BN@SiO2 nanofiber ceramic aerogel with ultralight, wave-transparent and heat-insulating for microwave sintering furnace[J]. Ceram Int, 2024, 50(19): 34519-34526.
[131] ZHANG X S, JIANG Y G, XU N N, et al. Thermal stable, fire-resistant and high strength SiBNO fiber/SiO2 aerogel composites with excellent thermal insulation and wave-transparent performances[J]. Mater Today Commun, 2022, 33: 104261.
[132] YANG H X, YE F. Microtexture, microstructure evolution, and thermal insulation properties of Si3N4/silica aerogel composites at high temperatures[J]. RSC Adv, 2022, 12(19): 12226-12234.
[133] SONG K R, HUANG S Y, WANG J W, et al. Fabrication and investigations on Si3N4/PAN/SiZrOCN ceramic aerogel composites with high-temperature wave permeability[J]. J Mater Sci, 2024, 59(4): 1312-1326.
[134] YANG H X, YE F, LIU Q, et al. Microstructure and properties of the Si3N4/silica aerogel composites fabricated by the sol-gel method via ambient pressure drying[J]. Mater Des, 2015, 85: 438-443.
[135] YANG H X, YE F, LIU Q, et al. A novel silica aerogel/porous Si3N4 composite prepared by freeze casting and sol-gel impregnation with high-performance thermal insulation and wave-transparent[J]. Mater Lett, 2015, 138: 135-138.
[136] LIU M, KONG Y, ZHANG B Q, et al. New insights into the resistance of silica aerogel to temperature up to 1200℃[J]. Mater Lett, 2024, 372: 137050.
[137] LI C D, ZHANG G H, LIN L L, et al. Silica aerogels: From materials research to industrial applications[J]. Int Mater Rev, 2023, 68(7): 862-900.