• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2210004 (2022)
Hao Wang1,2,*, Zengshan Yin1,2, Guohua Liu1,2, Denghui Hu1, and Shuang Gao1,2
Author Affiliations
  • 1Innovation Academy for Microsatellite, Chinese Academy of Sciences, Shanghai 201203, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP202259.2210004 Cite this Article Set citation alerts
    Hao Wang, Zengshan Yin, Guohua Liu, Denghui Hu, Shuang Gao. Lightweight Object Detection Method for Optical Remote Sensing Image[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210004 Copy Citation Text show less
    YOLOv5s network structure
    Fig. 1. YOLOv5s network structure
    Prediction process of YOLOv5
    Fig. 2. Prediction process of YOLOv5
    Schematic diagram of Ghost module
    Fig. 3. Schematic diagram of Ghost module
    Schematic diagram of FA module
    Fig. 4. Schematic diagram of FA module
    FABottleneck design
    Fig. 5. FABottleneck design
    Flow chart of sparse parameter adaptive channel pruning algorithm
    Fig. 6. Flow chart of sparse parameter adaptive channel pruning algorithm
    Samples in DOTA dataset
    Fig. 7. Samples in DOTA dataset
    Image before and after segmentation. (a) Image before segmentation; (b) image after segmentation
    Fig. 8. Image before and after segmentation. (a) Image before segmentation; (b) image after segmentation
    Comparison of detection effect before and after adding FA module. (a) Before adding FA module; (b) after adding FA module
    Fig. 9. Comparison of detection effect before and after adding FA module. (a) Before adding FA module; (b) after adding FA module
    Gamma parameter distribution before pruning
    Fig. 10. Gamma parameter distribution before pruning
    Gamma parameter distribution after pruning
    Fig. 11. Gamma parameter distribution after pruning
    ModuleYOLOv5sYOLOv5mYOLOv5lYOLOv5x
    depth_multiple0.330.671.01.33
    width_multiple0.500.751.01.25
    Number of C3 in backbone1,3,32,6,63,9,94,12,12
    Number of C3 in neck1234
    Number of Conv32,64,128,256,51248,96,192,384,76864,128,256,512,102480,160,320,640,1280
    Table 1. Number of YOLOv5 modules of different versions
    ModelParameters /MBModel size /MBmAPPrecisionRecall
    YOLOv5s7.2314.20.6920.930.82
    Ghost-YOLOv5s5.911.60.6760.9290.82
    Table 2. Comparison between YOLOv5s and Ghost-YOLOv5s
    Type of targetsAP for different types of targets (YOLOv5s)AP for different types of targets (Ghost-YOLOv5s)
    All classes mAP0.6920.676
    plane0.9420.939
    baseball_diamond0.7910.795
    bridge0.5430.518
    ground_track_field0.6530.589
    small_vehicle0.6000.586
    large_vehicle0.8060.799
    ship0.8780.871
    tennis_court0.9430.926
    basketball_court0.6830.657
    storage_tank0.7950.774
    soccer_ball_field0.5470.570
    roundabout0.7190.691
    harbor0.8190.825
    swimming_pool0.7110.718
    helicopter0.6380.532
    container_crane0.0120.019
    Table 3. AP for different types of targets in YOLOv5s and Ghost-YOLOv5s
    ModelParameters /MBModel size /MBmAPPrecisionRecall
    Ghost-YOLOv5s5.911.60.6760.9290.82
    FA-YOLO3.757.640.6730.9470.79
    Table 4. Comparison between Ghost-YOLOv5s and FA-YOLO
    ModelParameters /MBModel size /MBmAPPrecisionRecall
    FA-YOLO (without FA)3.737.540.6620.940.78
    FA-YOLO (with FA)3.757.640.6730.9470.79
    Table 5. Comparison before and after adding FA module
    mAPNumber of finetunePruning thresholdParameters /MBModel size /MB
    0.647200.053.436.99
    0.646200.13.186.49
    0.648200.152.555.29
    0.577200.21.413.11
    0.424200.250.852.05
    Table 6. Comparison of network models under different pruning thresholds
    ModelPrecisionRecallmAPParameters /MBModel size /MBMean inference time /s
    YOLOv5s0.930.820.6927.2314.25.4
    LW-YOLO0.9430.790.6482.555.295.2
    Table 7. Comparison between Ghost-YOLOv5s and LW-YOLO
    Type of targetsAP for different types of targets
    All classes mAP0.648
    plane0.916
    baseball_diamond0.712
    bridge0.473
    ground_track_field0.514
    small_vehicle0.570
    large_vehicle0.787
    ship0.852
    tennis_court0.933
    basketball_court0.639
    storage_tank0.738
    soccer_ball_field0.470
    roundabout0.615
    harbor0.774
    swimming_pool0.681
    helicopter0.587
    container_crane0.110
    Table 8. LW-YOLO network AP and mAP for different types of targets
    Type of targetsNumber of targets
    plane8072
    baseball_diamond412
    bridge2075
    ground_track_field331
    small_vehicle126501
    large_vehicle22218
    ship32973
    tennis_court2425
    basketball_court529
    storage_tank5346
    soccer_ball_field338
    roundabout437
    harbor6016
    swimming_pool2181
    helicopter635
    container_crane142
    Table 9. Statistics of number of targets in each category in training set
    Hao Wang, Zengshan Yin, Guohua Liu, Denghui Hu, Shuang Gao. Lightweight Object Detection Method for Optical Remote Sensing Image[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210004
    Download Citation