[1] ZHU W L, YANG X, DUAN F, et al.. Design and adaptive terminal sliding mode control of a fast tool servo system for diamond machining of freeform surfaces [J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4912-4922.
[2] DSOUZA R D, NAVIN K P, THEODORIDIS T, et al.. Design, fabrication and testing of a 2 DOF compliant flexural microgripper [J]. Microsystem Technologies, 2018, 24(9): 3867-3883.
[3] KIM M, PARK C, JE S, et al.. Real-time compensation of simultaneous errors induced by optical phase difference and substrate motion in scanning beam laser interference lithography system [J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(4): 1491-1500.
[4] WANG Y, WU S, XU L, et al.. A new precise positioning method for piezoelectric scanner of AFM [J]. Ultramicroscopy, 2019, 196: 67-73.
[5] XU S, ZHU X, DONG Z, et al.. Nonlinear modeling and analysis of compliant mechanisms with circular flexure hinges based on quadrature beam elements [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(9): 3277-3285.
[6] CHOI K B, LEE J J, KIM G H, et al.. Amplification ratio analysis of a bridge-type mechanical amplification mechanism based on a fully compliant model [J]. Mechanism and Machine Theory, 2018, 121: 355-372.
[9] LIU J, LIU Y, ZHAO L, et al.. Design and experiments of a single-foot linear piezoelectric actuator operated in a stepping mode [J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8063-8071.
[11] HANG S, LIU J, DENG J, et al.. Development of a novel two-DOF pointing mechanism using a bending-bending hybrid piezoelectric actuator [J]. IEEE Transactions on Industrial Electronics, 2018, 66(10):7861-7872.
[12] OUBELLIL R, VODA A, BOUDAOUD M, et al.. Mixed stepping/scanning mode control of stick-slip SEM-integrated nano-robotic systems [J]. Sensors and Actuators, A: Physical, 2019, 285: 258-268.
[13] MISHAKOV G V, DEMIKHOV E I, SHARKOV A V. Inertial motor on a single piezoelectric actuator for a low-temperature near-field scanning optical microscope [J]. Review of Scientific Instruments, 2019, 90(1): 016103.
[14] WANG S, RONG W, WANG L, et al.. A survey of piezoelectric actuators with long working stroke in recent years: Classifications, principles, connections and distinctions [J]. Mechanical Systems and Signal Processing, 2019, 123: 591-605.
[15] BOUDAOUD M, LU T, LIANG S, et al.. A voltage/frequency modeling for a multi-DOFs serial nanorobotic system based on piezoelectric inertial actuators [J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(6): 2814-2824.
[16] LIU Y F, LI J, HU X H, et al.. Modeling and control of piezoelectric inertia-friction actuators: Review and future research directions [J]. Mechanical Sciences, 2015, 6(2): 95-107.
[17] BERGANDER A, BREGUET J M. Performance improvements for stick-slip positioners [C]. Proceedings of 2003 International Symposium on Micromechatronics and Human Science, 2003, 59-66.
[18] ZOU Q, GIESSEN C V, GARBINI J, et al.. Precision tracking of driving wave forms for inertial reaction devices [J]. Review of Scientific Instruments, 2005, 76(2): 23701-23711.
[19] YONG Y K, MOHEIMANI S O R, KENTON B J, et al.. Invited review article: High-speed flexure-guided nanopositioning: mechanical design and control issues [J]. Review of Scientific Instruments, 2012, 83(12): 121101.
[20] CHAO S H, GARBINI J L, DOUGHERTY W M, et al.. The design and control of a three-dimensional piezoceramic tube scanner with an inertial slider [J]. Review of Scientific Instruments, 2006, 77(6): 063710.
[21] CHEN Z, CHEN G, ZHANG X. Damped leaf flexure hinge [J]. Review of Scientific Instruments, 2015, 86(5): 055002.
[22] CHEN Z, JIANG X, ZHANG X. Damped circular hinge with integrated comb-like substructures [J]. Precision Engineering, 2018, 53: 212-220.
[23] SPILLER M, HURáK Z. Hybrid charge control for stick-slip piezoelectric actuators [J]. Mechatronics, 2011, 21(1): 100-108.
[24] CHENG L, LIU W, YANG C, et al.. A neural-network based controller for piezoelectric-actuated stick-slip devices [J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2598-2607.
[25] ZHU X, WEN Z, CHEN G, et al.. A decoupled flexure-based rotational micropositioning stage with compact size [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(22): 4167-4179.
[26] HUNSTIG M, HEMSEL T, SEXTRO W. Stick-slip and slip-slip operation of piezoelectric inertia drives-Part Ⅱ: Frequency-limited excitation [J]. Sensors and Actuators, A: Physical, 2013, 200: 79-89.
[27] ZESCH W. Multi-degree-of-freedom Micropositioning using Stepping Principles[D]. Zurich: Swiss Federal Institute of Technology, 1997.
[28] YANG M J, NIU J B, LI C X, et al.. High-bandwidth control of nanopositioning stages via an inner-loop delayed position feedback [J]. IEEE Transactions on Automation Science & Engineering, 2015, 12(4): 1357-1368.
[29] WEN Z, DING Y, LIU P, et al.. Direct integration method for time-delayed control of second-order dynamic systems [J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2017, 139(6): 061001.
[30] SCHMITT L M. Theory of genetic algorithms [J]. Theoretical Computer Science, 2001, 259(1-2): 1-61.
[31] TIAN L, WU J, XIONG Z, et al.. Precise motion control of piezoelectric actuators using modified ZPETC-based composite controller [C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2014: 967-972.
[32] TAN N, KAYA I, ATHERTON D P. A graphical method for computation of all stabilizing PI controllers [C]. In Proc. 16th IFAC World Congr., Czech Republic, Europe, 2005, 16: 349-354.