• Laser & Optoelectronics Progress
  • Vol. 55, Issue 3, 031012 (2018)
Yan Xu* and Meishuang Sun
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP55.031012 Cite this Article Set citation alerts
    Yan Xu, Meishuang Sun. Convolution Neural Network Image Defogging Based on Multi-Feature Fusion[J]. Laser & Optoelectronics Progress, 2018, 55(3): 031012 Copy Citation Text show less
    References

    [1] Lu S H, Huang H Z, Zhang H Z et al. Comprehensive performance evaluation for video surveillance cameras[J]. Laser & Optoelectronics Progress, 52, 091102(2015).

    [2] Zhang S H, Chen H F, Zhang H T et al. Design of optical lens for traffic surveillance system[J]. Laser & Optoelectronics Progress, 48, 022202(2011).

    [3] Li S J, Fan X, Zhu B et al. A method for small infrared targets detection based on the technology of motion blur recovery[J]. Acta Optica Sinica, 37, 0610001(2017).

    [4] Wu Y Q, Yin D Y. Detection of small target in infrared image based on background predication by FLS-SVM[J]. Acta Optica Sinica, 30, 2806-2811(2010).

    [5] Stark J A. Adaptive image contrast enhancement using generalizations of histogram equalization[J]. IEEE Transactions on Image Processing, 9, 889-896(2000). http://europepmc.org/abstract/MED/18255459

    [6] Xu Z Y, Liu X M, Ji N. Fog removal from color images using contrast limited adaptive histogram equalization. [C]// 2 nd International Congress on Image and Signal Processing , 10955452(2009).

    [7] Yang W T, Wang R G, Fan S et al. Variable filter Retinex algorithm for foggy image enhancement[J]. Journal of Computer-Aided Design & Computer Graphics, 22, 965-971(2010).

    [8] Yu P, Hao C C. Fractional differential and multiscale Retinex combined foggy image enhancement[J]. Laser & Optoelectronics Progress, 55, 011012(2018).

    [9] Tan R T. Visibility in bad weather from a single image[C]. IEEE Conference on Computer Vision and Pattern Recognition, 1-8(2008).

    [10] Fattal R. Single image dehazing[J]. ACM Transactions on Graphics, 27, 72(2008).

    [11] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[C]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 2341(2011).

    [12] Tarel J P, Hautière N. Fast visibility restoration from a single color or gray level image[C]. IEEE 12 th International Conference on Computer Vision, 2201-2208(2009).

    [13] Sun X M, Sun J X, Zhao L R et al. Improved algorithm for single image haze removing using dark channel prior[J]. Journal of Image and Graphics, 19, 381-385(2014).

    [14] Yang A P, Bai H H. Nighttime image defogging based on the theory of Retinex and dark channel prior[J]. Laser & Optoelectronics Progress, 54, 041002(2017).

    [15] He K M, Zhang X Y, Ren S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015). http://www.sciencedirect.com/science/article/pii/S0031320315004252

    [16] Li T, Sun J G, Zhang X J et al. Research of hyperspectral image classification based on hierarchical sparse representation feature learning[J]. Laser & Optoelectronics Progress, 53, 091001(2016).

    [17] Ouyang W L, Luo P, Zeng X Y et al. DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection[J]. Eprint Arxiv(2014). http://www.oalib.com/paper/4068772

    [18] Ye G L, Sun S Y, Gao K J et al. Nighttime pedestrian detection based on faster region convolution neural network[J]. Laser & Optoelectronics Progress, 54, 081003(2017).

    [19] Liu S, Liang X D, Liu L Q et al. Matching-CNN meets KNN: quasi-parametric human parsing[J]. IEEE Conference on Computer Vision and Pattern Recognition, 1419-1427(2015). http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298748

    [20] Cai B L, Xu X M, Jia K et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 25, 5187-5198(2016). http://dl.acm.org/citation.cfm?id=3046957

    [21] McCartney E J. Optics of the atmosphere: scattering by molecules and particles[J]. IEEE Journal of Quantum Electronics, 24, 779-779(1977). http://www.tandfonline.com/doi/abs/10.1080/713819629

    [22] Ma M, Li Y B. Multi-level image sequences and convolutional neural networks based human action recognition method[J]. Journal of Jilin University Engineering and Technology Edition, 47, 1244-1252(2017).

    [23] Durbin R, Rumelhart D E. Product units: a computationally powerful and biologically plausible extension to backpropagation networks[J]. Neural Computation, 1, 133-142(1989). http://ieeexplore.ieee.org/document/6796075/

    [24] Liu W J, Liang X J, Qu H C. Learning performance of convolutional neural networks with different pooling models[J]. Journal of Image and Graphics, 21, 1178-1190(2016).

    [25] Zeiler M D, Fergus R[J]. Visualizing and understanding convolutional networks Springer International Publishing, 8689, 818-833(2014).

    [26] Lecun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998). http://brain.oxfordjournals.org/lookup/external-ref?access_num=10.1109/5.726791&link_type=DOI

    [27] Scharstein D, Szeliski R, Zabih R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 47, 7-42(2002).

    [28] Scharstein D, Szeliski R. High-accuracy stereo depth maps using structured light[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 195-202(2003).

    [29] Scharstein D, Pal C. Learning conditional random fields for stereo[C]. IEEE Conference on Computer Vision and Pattern Recognition, 9738080(2007).

    [30] Hirschmuller H, Scharstein D. Evaluation of cost functions for stereo matching[C]. IEEE Conference on Computer Vision and Pattern Recognition, 9738137(2007).

    [31] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [32] Kwon H H, Tai Y W, Lin S. Data-driven depth map refinement via multi-scale sparse representation[C]. IEEE Conference on Computer Vision and Pattern Recognition, 159-167(2015).

    [33] Meng G, Wang Y, Duan J et al. Efficient image dehazing with boundary constraint and contextual regularization[C]. IEEE International Conference on Computer Vision, 617-624(2013).

    [34] Galdran A, Vazquez-Corral J, Pardo D et al. Fusion-based variational image dehazing[J]. IEEE Signal Processing Letters, 24, 151-155(2017). http://ieeexplore.ieee.org/document/7792620/

    [35] Huynh-Thu Q, Barkowsky M, Callet P L. The importance of visual attention in improving the 3D-TV viewing experience: overview and new perspectives[J]. IEEE Transactions on Broadcasting, 57, 421-431(2011). http://ieeexplore.ieee.org/document/5752215/