[1] Mohapatra A K, Jackson T R, Adams C S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency[J]. Physical Review Letters, 98, 113003(2007).
[2] Sedlacek J A, Schwettmann A, Kübler H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).
[3] Song Z F, Liu H P, Liu X C et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics Express, 27, 8848-8857(2019).
[4] Jing M Y, Hu Y, Ma J et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).
[5] Liu X B, Jia F D, Zhang H Y et al. Using amplitude modulation of the microwave field to improve the sensitivity of Rydberg-atom based microwave electrometry[J]. AIP Advances, 11, 085127(2021).
[6] Zhang L H, Liu Z K, Liu B et al. Rydberg microwave-frequency-comb spectrometer[J]. Physical Review Applied, 18, 014033(2022).
[7] Jiao Y C, Han X X, Fan J B et al. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication[J]. Applied Physics Express, 12, 126002(2019).
[8] Artusio-Glimpse A, Simons M T, Prajapati N et al. Modern RF measurements with hot atoms: a technology review of Rydberg atom-based radio frequency field sensors[J]. IEEE Microwave Magazine, 23, 44-56(2022).
[9] Li W, Zhang C G, Zhang H et al. Power-frequency electric field measurement based on AC-Stark effect of Rydberg atoms[J]. Laser & Optoelectronics Progress, 58, 1702002(2021).
[10] Chen H H, Yao Z W, Lu Z Q et al. Transportable high-precision atomic interference gyroscope[J]. Navigation and Control, 21, 42-50, 59(2022).
[11] Deng X B, Xu W J, Cheng Y et al. Miniaturized atomic gravimeter and its application[J]. Navigation and Control, 21, 66-79(2022).
[12] Zhang H Q, Huang Y, Zhang B L et al. Integrated laser cooling system for portable calcium ion light clock[J]. Navigation and Control, 21, 209-220(2022).
[13] Bai J D, Wang J Y, Liu S et al. Autler–Townes doublet in single-photon Rydberg spectra of cesium atomic vapor with a 319 nm UV laser[J]. Applied Physics B, 125, 33(2019).
[14] Gordon J A, Holloway C L, Schwarzkopf A et al. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms[J]. Applied Physics Letters, 105, 024104(2014).
[15] Jin G, Cheng Y J, Huang C Z et al. Generation of laser system using for Rydberg atom excitation[J]. Chinese Journal of Lasers, 49, 0701003(2022).
[16] Carr C, Tanasittikosol M, Sargsyan A et al. Three-photon electromagnetically induced transparency using Rydberg states[J]. Optics Letters, 37, 3858-3860(2012).
[17] Ryabtsev I I, Beterov I I, Tretyakov D B et al. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions[J]. Physical Review A, 84, 053409(2011).
[18] Shaffer J P, Ripka F, Liu C et al. Rydberg atom-based radio frequency electrometry: enhancement of the self-calibrated autler-townes sensing mode[C], 226-229(2022).
[19] Rydberg J R. XXXIV. On the structure of the line-spectra of the chemical elements[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 29, 331-337(1890).
[20] Goy P, Raimond J M, Vitrant G et al. Millimeter-wave spectroscopy in cesium Rydberg states. quantum defects, fine- and hyperfine-structure measurements[J]. Physical Review A, 26, 2733-2742(1982).
[21] Saffman M, Walker T G, Mølmer K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 82, 2313-2363(2010).
[22] Beterov I I, Ryabtsev I I, Tretyakov D B et al. Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n≤80[J]. Physical Review A, 79, 052504(2009).
[23] Wade C G, Šibalić N, de Melo N R et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 11, 40-43(2017).
[24] Fabre C, Haroche S, Goy P. Millimeter spectroscopy in sodium Rydberg states: quantum-defect, fine-structure, and polarizability measurements[J]. Physical Review A, 18, 229-237(1978).
[25] Autler S H, Townes C H. Stark effect in rapidly varying fields[J]. Physical Review, 100, 703-722(1955).
[26] Simons M T, Gordon J A, Holloway C L. Simultaneous use of Cs and Rb Rydberg atoms for dipole moment assessment and RF electric field measurements via electromagnetically induced transparency[J]. Journal of Applied Physics, 120, 123103(2016).
[27] Robinson A K, Artusio-Glimpse A B, Simons M T et al. Atomic spectra in a six-level scheme for electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Physical Review A, 103, 023704(2021).
[28] Šibalić N, Pritchard J D, Adams C S et al. ARC: an open-source library for calculating properties of alkali Rydberg atoms[J]. Computer Physics Communications, 220, 319-331(2017).
[29] Holloway C L, Gordon J A, Jefferts S et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 62, 6169-6182(2014).
[30] Simons M T, Gordon J A, Holloway C L et al. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 108, 174101(2016).
[31] Chopinaud A, Pritchard J D. Optimal state choice for Rydberg-atom microwave sensors[J]. Physical Review Applied, 16, 024008(2021).
[32] Anderson D A, Miller S A, Raithel G et al. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell[J]. Physical Review Applied, 5, 034003(2016).
[33] Jiao Y C, Han X X, Yang Z W et al. Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields[J]. Physical Review A, 94, 023832(2016).
[34] Shang H S, Zhang T Y, Miao J X et al. Laser with 10-13 short-term instability for compact optically pumped cesium beam atomic clock[J]. Optics Express, 28, 6868-6880(2020).
[35] Simons M T, Haddab A H, Gordon J A et al. A Rydberg atom-based mixer: measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 114, 114101(2019).
[36] Abel R P, Mohapatra A K, Bason M G et al. Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system[J]. Applied Physics Letters, 94, 071107(2009).
[37] Wang Y Z, Fu Y Q, Lin Y et al. Simulation design of optical hypersurface integrated atomic gas chamber[J]. Laser & Optoelectronics Progress, 59, 1124001(2022).