• Acta Optica Sinica (Online)
  • Vol. 2, Issue 6, 0616001 (2025)
Xiaofeng Rao1,2,3, Tao He1,2,3,*, Chengfeng Li1,2,3, Chao Feng1,2,3..., Zhanshan Wang1,2,3, Yuzhi Shi1,2,3,** and Xinbin Cheng1,2,3,***|Show fewer author(s)
Author Affiliations
  • 1Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 3Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
  • show less
    DOI: 10.3788/AOSOL240474 Cite this Article Set citation alerts
    Xiaofeng Rao, Tao He, Chengfeng Li, Chao Feng, Zhanshan Wang, Yuzhi Shi, Xinbin Cheng. Research Progress in Metaphotonic Biosensors Based on Bound States in the Continuum (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(6): 0616001 Copy Citation Text show less
    References

    [1] Liu W P, Chung K, Yu S B et al. Nanoplasmonic biosensors for environmental sustainability and human health[J]. Chemical Society Reviews, 53, 10491-10522(2024).

    [2] Altug H, Oh S H, Maier S A et al. Advances and applications of nanophotonic biosensors[J]. Nature Nanotechnology, 17, 5-16(2022).

    [3] Kevadiya B D, Machhi J, Herskovitz J et al. Diagnostics for SARS-CoV-2 infections[J]. Nature Materials, 20, 593-605(2021).

    [4] Kim J, Campbell A S, de Ávila B E F et al. Wearable biosensors for healthcare monitoring[J]. Nature Biotechnology, 37, 389-406(2019).

    [5] Kabashin A V, Kravets V G, Grigorenko A N. Label-free optical biosensing: going beyond the limits[J]. Chemical Society Reviews, 52, 6554-6585(2023).

    [6] Zanchetta G, Lanfranco R, Giavazzi F et al. Emerging applications ‍of ‍label-free ‍optical biosensors[J]. Nanophotonics, 6, 627-645(2017).

    [7] Qin J, Jiang S B, Wang Z S et al. Metasurface micro/nano-optical sensors: principles and applications[J]. ACS Nano, 16, 11598-11618(2022).

    [8] Luo M, Zhou Y, Zhao X Y et al. Label-free bound-states-in-the-continuum biosensors[J]. Biosensors, 12, 1120(2022).

    [9] Špačková B, Wrobel P, Bocková M et al. Optical biosensors based on plasmonic nanostructures: a review[J]. Proceedings of the IEEE, 104, 2380-2408(2016).

    [10] Oh S H, Altug H. Performance metrics and enabling technologies for nanoplasmonic biosensors[J]. Nature Communications, 9, 5263(2018).

    [11] Zhang S Y, Wong C L, Zeng S W et al. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective[J]. Nanophotonics, 10, 259-293(2020).

    [12] Otte M A, Sepúlveda B, Ni W H et al. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing[J]. ACS Nano, 4, 349-357(2010).

    [13] Conteduca D, Barth I, Pitruzzello G et al. Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging[J]. Nature Communications, 12, 3293(2021).

    [14] Lu X Y, Zhang T Y, Wan R G et al. Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface[J]. Optics Express, 26, 10179-10187(2018).

    [15] Liu W W, Li Z C, Ansari M A et al. Design strategies and applications of dimensional optical field manipulation based on metasurfaces[J]. Advanced Materials, 35, e2208884(2023).

    [16] Dorrah A H, Capasso F. Tunable structured light with flat optics[J]. Science, 376, eabi6860(2022).

    [17] Yang Y, Seong J, Choi M et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform[J]. Light: Science & Applications, 12, 152(2023).

    [18] He T, Liu T, Xiao S Y et al. Perfect anomalous reflectors at optical frequencies[J]. Science Advances, 8, eabk3381(2022).

    [19] He T, Zhang Z Y, Zhu J Y et al. Scattering exceptional point in the visible[J]. Light: Science & Applications, 12, 229(2023).

    [20] Zhang R Z, Guo Y H, Zhang F et al. Dual-layer metasurface enhanced capacity of polarization multiplexing[J]. Laser & Photonics Reviews, 18, 2400126(2024).

    [21] Shen Y, Kim A D, Shahili M et al. THz time-domain characterization of amplifying quantum-cascade metasurface[J]. Applied Physics Letters, 119, 181108(2021).

    [22] Savinov V, Fedotov V A, Zheludev N I. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials[J]. Physical Review B, 89, 205112(2014).

    [23] Kuznetsov A I, Miroshnichenko A E, Brongersma M L et al. Optically resonant dielectric nanostructures[J]. Science, 354, aag2472(2016).

    [24] Tseng M L, Jahani Y, Leitis A et al. Dielectric metasurfaces enabling advanced optical biosensors[J]. ACS Photonics, 8, 47-60(2021).

    [25] Yavas O, Svedendahl M, Dobosz P et al. On-a-chip biosensing based on all-dielectric nanoresonators[J]. Nano Letters, 17, 4421-4426(2017).

    [26] Barulin A, Nguyen D D, Kim Y et al. Metasurfaces for quantitative biosciences of molecules, cells, and tissues: sensing and diagnostics[J]. ACS Photonics, 11, 904-916(2024).

    [27] Hu J, Safir F, Chang K et al. Rapid genetic screening with high quality factor metasurfaces[J]. Nature Communications, 14, 4486(2023).

    [28] Tonkaev P, Sinev I S, Rybin M V et al. Multifunctional and transformative metaphotonics with emerging materials[J]. Chemical Reviews, 122, 15414-15449(2022).

    [29] Lyu J M, Huang L H, Chen L et al. Review on the terahertz metasensor: from featureless refractive index sensing to molecular identification[J]. Photonics Research, 12, 194-217(2024).

    [30] Koshelev K, Kruk S, Melik-Gaykazyan E et al. Subwavelength dielectric resonators for nonlinear nanophotonics[J]. Science, 367, 288-292(2020).

    [31] Liu Z J, Xu Y, Lin Y et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 123, 253901(2019).

    [32] Shi T, Deng Z L, Geng G Z et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum[J]. Nature Communications, 13, 4111(2022).

    [33] Wei J X, Xu C, Dong B W et al. Mid-infrared semimetal polarization detectors with configurable polarity transition[J]. Nature Photonics, 15, 614-621(2021).

    [34] Wei J X, Chen Y, Li Y et al. Geometric filterless photodetectors for mid-infrared spin light[J]. Nature Photonics, 17, 171-178(2023).

    [35] Dai M J, Wang C W, Sun F Y et al. On-chip photodetection of angular momentums of vortex structured light[J]. Nature Communications, 15, 5396(2024).

    [36] Jiang H, Chen Y Z, Guo W Y et al. Metasurface-enabled broadband multidimensional photodetectors[J]. Nature Communications, 15, 8347(2024).

    [37] Wang Y, Mei L Y, Li Y et al. Integration of two-dimensional materials based photodetectors for on-chip applications[J]. Physics Reports, 1081, 1-46(2024).

    [38] Shi Y Z, Xu X H, Nieto-Vesperinas M et al. Advances in light transverse momenta and optical lateral forces[J]. Advances in Optics and Photonics, 15, 835-906(2023).

    [39] Shi Y Z, Lai C X, Yi W C et al. Recent progress in optical lateral forces (invited)[J]. Acta Optica Sinica, 44, 0700001(2024).

    [40] Tao Y, Zhong W, Wu X Y et al. Optical torques: fundamentals and their applications[J]. Acta Optica Sinica, 43, 1623012(2023).

    [41] Wang Y Y, Zhou J H, Li J H. Construction of plasmonic nano-biosensor-based devices for point-of-care testing[J]. Small Methods, 1, 1700197(2017).

    [42] Xu Y, Bai P, Zhou X D et al. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth[J]. Advanced Optical Materials, 7, 1801433(2019).

    [43] Rodrigo D, Tittl A, Ait-Bouziad N et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces[J]. Nature Communications, 9, 2160(2018).

    [44] Cetin A E, Altug H. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing[J]. ACS Nano, 6, 9989-9995(2012).

    [45] Chung T, Wang H, Cai H G. Dielectric metasurfaces for next-generation optical biosensing: a comparison with plasmonic sensing[J]. Nanotechnology, 34, 402001(2023).

    [46] Lal S, Clare S E, Halas N J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact[J]. Accounts of Chemical Research, 41, 1842-1851(2008).

    [47] Jeong J, Goldflam M D, Campione S et al. High quality factor toroidal resonances in dielectric metasurfaces[J]. ACS Photonics, 7, 1699-1707(2020).

    [48] Li C F, He T, Yang X et al. Enhanced circular dichroism for achiral sensing based on a DNA-origami-empowered anapole metasurface[J]. Nano Letters, 24, 9451-9458(2024).

    [49] Tittl A, John-Herpin A, Leitis A et al. Metasurface-based molecular biosensing aided by artificial intelligence[J]. Angewandte Chemie International Edition, 58, 14810-14822(2019).

    [50] Bosio N, Šípová-Jungová H, Länk N O et al. Plasmonic versus all-dielectric nanoantennas for refractometric sensing: a direct comparison[J]. ACS Photonics, 6, 1556-1564(2019).

    [51] Meudt M, Bogiadzi C, Wrobel K et al. Hybrid photonic-plasmonic bound states in continuum for enhanced light manipulation[J]. Advanced Optical Materials, 8, 2000898(2020).

    [52] Qiu S, Zhang H J, Shi Z H et al. Ultrasensitive refractive index sensing based on hybrid high-Q metasurfaces[J]. The Journal of Physical Chemistry C, 127, 8263-8270(2023).

    [53] Wang J J, Li P S, Zhao X Q et al. Optical bound states in the continuum in periodic structures: mechanisms, effects, and applications[J]. Photonics Insights, 3, R01(2024).

    [54] Xu G Z, Xing H Y, Xue Z Q et al. Recent advances and perspective of photonic bound states in the continuum[J]. Ultrafast Science, 3, 33(2023).

    [55] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [56] Azzam S I, Kildishev A V. Photonic bound states in the continuum: from basics to applications[J]. Advanced Optical Materials, 9, 2001469(2021).

    [57] Kang M, Liu T, Chan C T et al. Applications of bound states in the continuum in photonics[J]. Nature Reviews Physics, 5, 659-678(2023).

    [58] Qin H Y, Su Z P, Liu M Q et al. Arbitrarily polarized bound states in the continuum with twisted photonic crystal slabs[J]. Light: Science & Applications, 12, 66(2023).

    [59] Zhou Y, Guo Z H, Zhao X Y et al. Dual-quasi bound states in the continuum enabled plasmonic metasurfaces[J]. Advanced Optical Materials, 10, 2200965(2022).

    [60] Yesilkoy F, Arvelo E R, Jahani Y et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 13, 390-396(2019).

    [61] Chen Y, Zhao C, Zhang Y Z et al. Integrated molar chiral sensing based on high-Q metasurface[J]. Nano Letters, 20, 8696-8703(2020).

    [62] Barkey M, Büchner R, Wester A et al. Pixelated high-Q metasurfaces for in situ biospectroscopy and artificial intelligence-enabled classification of lipid membrane photoswitching dynamics[J]. ACS Nano, 18, 11644-11654(2024).

    [63] von Neumann J, Wigner E. Über merkwürdige diskrete eigenwerte[J]. Physikalische Zeitschrift, 30, 465(1929).

    [64] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014).

    [65] Deriy I, Toftul I, Petrov M et al. Bound states in the continuum in compact acoustic resonators[J]. Physical Review Letters, 128, 084301(2022).

    [66] Zhou Z L, Jia B, Wang N Y et al. Observation of perfectly-chiral exceptional point via bound state in the continuum[J]. Physical Review Letters, 130, 116101(2023).

    [67] McIver M. Trapped modes supported by submerged obstacles[J]. Proceedings of the Royal Society of London Series A, 456, 1851-1860(2000).

    [68] Liang Y, Tsai D P, Kivshar Y. From local to nonlocal high-Q plasmonic metasurfaces[J]. Physical Review Letters, 133, 053801(2024).

    [69] Shastri K, Monticone F. Nonlocal flat optics[J]. Nature Photonics, 17, 36-47(2022).

    [70] Yao J, Lai F X, Fan Y B et al. Nonlocal meta-lens with Huygens’ bound states in the continuum[J]. Nature Communications, 15, 6543(2024).

    [71] Malek S C, Overvig A C, Alù A et al. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces[J]. Light: Science & Applications, 11, 246(2022).

    [72] Overvig A, Alù A. Diffractive nonlocal metasurfaces[J]. Laser & Photonics Reviews, 16, 2100633(2022).

    [73] Overvig A C, Malek S C, Yu N F. Multifunctional nonlocal metasurfaces[J]. Physical Review Letters, 125, 017402(2020).

    [74] Song J H, van de Groep J, Kim S J et al. Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking[J]. Nature Nanotechnology, 16, 1224-1230(2021).

    [75] Carletti L, Koshelev K, de Angelis C et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Physical Review Letters, 121, 033903(2018).

    [76] Zograf G, Koshelev K, Zalogina A et al. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum[J]. ACS Photonics, 9, 567-574(2022).

    [77] Liu Z J, Wang J Y, Chen B et al. Giant enhancement of continuous wave second harmonic generation from few-layer GaSe coupled to high-Q quasi bound states in the continuum[J]. Nano Letters, 21, 7405-7410(2021).

    [78] Tittl A, Leitis A, Liu M K et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105-1109(2018).

    [79] Aigner A, Tittl A, Wang J et al. Plasmonic bound states in the continuum to tailor light-matter coupling[J]. Science Advances, 8, eadd4816(2022).

    [80] Yang Q L, Yao Z B, Xu L et al. Ultrasensitive terahertz fingerprint retrieval with multiple-BIC-enabled meta-sensors[J]. Laser & Photonics Reviews, 19, 2400825(2024).

    [81] Huang C C, Liang L J, Chang P Y et al. Terahertz liquid biosensor based on a graphene metasurface for ultrasensitive detection with a quasi-bound state in the continuum[J]. Advanced Materials, 36, 2310493(2024).

    [82] Zhou C B, Huang L J, Jin R et al. Bound states in the continuum in asymmetric dielectric metasurfaces[J]. Laser & Photonics Reviews, 17, 2200564(2023).

    [83] You S J, Zhou M M, Xu L et al. Quasi-bound states in the continuum with a stable resonance wavelength in dimer dielectric metasurfaces[J]. Nanophotonics, 12, 2051-2060(2023).

    [84] Qin H Y, Shi Y Z, Su Z P et al. Exploiting extraordinary topological optical forces at bound states in the continuum[J]. Science Advances, 8, eade7556(2022).

    [85] Liang Y, Koshelev K, Zhang F C et al. Bound states in the continuum in anisotropic plasmonic metasurfaces[J]. Nano Letters, 20, 6351-6356(2020).

    [86] Li S Y, Zhou C B, Liu T T et al. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces[J]. Physical Review A, 100, 063803(2019).

    [87] Huang L J, Li S L, Zhou C B et al. Realizing ultrahigh-Q resonances through harnessing symmetry-protected bound states in the continuum[J]. Advanced Functional Materials, 34, 2309982(2024).

    [88] Huang L J, Jin R, Zhou C B et al. Ultrahigh-Q guided mode resonances in an all-dielectric metasurface[J]. Nature Communications, 14, 3433(2023).

    [89] Feng Z W, Shi T, Geng G Z et al. Dual-band polarized upconversion photoluminescence enhanced by resonant dielectric metasurfaces[J]. eLight, 3, 21(2023).

    [90] Yang G C, Dev S U, Allen M S et al. Optical bound states in the continuum enabled by magnetic resonances coupled to a mirror[J]. Nano Letters, 22, 2001-2008(2022).

    [91] Yang G C, Allen M S, Allen J W et al. Unlocking efficient ultrafast bound-electron optical nonlinearities via mirror induced quasi bound states in the continuum[J]. Nano Letters, 24, 1679-1686(2024).

    [92] Li X, Maqbool E, Han Z H. Narrowband mid-infrared thermal emitters based on the Fabry‒Perot type of bound states in the continuum[J]. Optics Express, 31, 20338-20344(2023).

    [93] Weimann S, Xu Y, Keil R et al. Compact surface Fano states embedded in the continuum of waveguide arrays[J]. Physical Review Letters, 111, 240403(2013).

    [94] Rybin M V, Koshelev K L, Sadrieva Z F et al. High-Q supercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 119, 243901(2017).

    [95] Bogdanov A A, Koshelev K L, Kapitanova P V et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J]. Advanced Photonics, 1, 016001(2019).

    [96] Sadrieva Z, Frizyuk K, Petrov M et al. Multipolar origin of bound states in the continuum[J]. Physical Review B, 100, 115303(2019).

    [97] Chen W J, Chen Y T, Liu W. Multipolar conversion induced subwavelength high-Q Kerker supermodes with unidirectional radiations[J]. Laser & Photonics Reviews, 13, 1900067(2019).

    [98] Volkovskaya I, Xu L, Huang L J et al. Multipolar second-harmonic generation from high-Q quasi-BIC states in subwavelength resonators[J]. Nanophotonics, 9, 3953-3963(2020).

    [99] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).

    [100] Liu G D, Zhai X, Wang L L et al. A high-performance refractive index sensor based on Fano resonance in Si split-ring metasurface[J]. Plasmonics, 13, 15-19(2018).

    [101] Liu C X, Li D S, Boutinaud P et al. Tailoring electromagnetic responses in terahertz metasurface by breaking the structural symmetry in T-shaped resonators[J]. Advanced Photonics Research, 4, 2200356(2023).

    [102] Yang Y M, Kravchenko I I, Briggs D P et al. All-dielectric metasurface analogue of electromagnetically induced transparency[J]. Nature Communications, 5, 5753(2014).

    [103] Zhang C B, Xue T J, Zhang J et al. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells[J]. Nanophotonics, 11, 101-109(2021).

    [104] Zhao R, Niu Q, Zou Y et al. A terahertz metasurface biosensor based on electromagnetically induced transparency for fingerprint trace detection[J]. Journal of Materials Chemistry C, 12, 6106-6113(2024).

    [105] Zhang J, Mu N, Liu L H et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency[J]. Biosensors and Bioelectronics, 185, 113241(2021).

    [106] Melik-Gaykazyan E, Koshelev K, Choi J H et al. From Fano to quasi-BIC resonances in individual dielectric nanoantennas[J]. Nano Letters, 21, 1765-1771(2021).

    [107] Wang R D, Xu L, Wang J Y et al. Electric Fano resonance-based terahertz metasensors[J]. Nanoscale, 13, 18467-18472(2021).

    [108] Tang X, He R, Chen C et al. Quasi-bound states in the continuum in a metal nanograting metasurface for a high figure-of-merit refractive index sensor[J]. Optics Express, 32, 762-773(2024).

    [109] Wang R D, Xu L, Huang L J et al. Ultrasensitive terahertz biodetection enabled by quasi-BIC-based metasensors[J]. Small, 19, 2301165(2023).

    [110] Li D X, Zhou H, Chen Z W et al. Ultrasensitive molecular fingerprint retrieval using strongly detuned overcoupled plasmonic nanoantennas[J]. Advanced Materials, 35, 2301787(2023).

    [111] Wang J, Weber T, Aigner A et al. Mirror-coupled plasmonic bound states in the continuum for tunable perfect absorption[J]. Laser & Photonics Reviews, 17, 2300294(2023).

    [112] Biswas S K, Adi W, Beisenova A et al. From weak to strong coupling: quasi-BIC metasurfaces for mid-infrared light-matter interactions[J]. Nanophotonics, 13, 2937-2949(2024).

    [113] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 11, 23-36(2016).

    [114] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).

    [115] Bernhardt N, Koshelev K, White S J U et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers[J]. Nano Letters, 20, 5309-5314(2020).

    [116] Babicheva V E, Evlyukhin A B. Mie-resonant metaphotonics[J]. Advances in Optics and Photonics, 16, 539-658(2024).

    [117] Rui G H, Zou S T, Gu B et al. Surface-enhanced circular dichroism by localized superchiral hotspots in a dielectric dimer array metasurface[J]. The Journal of Physical Chemistry C, 126, 2199-2206(2022).

    [118] Yang S, He M Z, Hong C C et al. Engineering electromagnetic field distribution and resonance quality factor using slotted quasi-BIC metasurfaces[J]. Nano Letters, 22, 8060-8067(2022).

    [119] Watanabe K, Iwanaga M. Nanogap enhancement of the refractometric sensitivity at quasi-bound states in the continuum in all-dielectric metasurfaces[J]. Nanophotonics, 12, 99-109(2023).

    [120] Zito G, Siciliano G, Seifalinezhad A et al. Molecularly imprinted polymer sensor empowered by bound states in the continuum for selective trace-detection of TGF-beta[J]. Advanced Science, 11, 2401843(2024).

    [121] Romano S, Mangini M, Penzo E et al. Ultrasensitive surface refractive index imaging based on quasi-bound states in the continuum[J]. ACS Nano, 14, 15417-15427(2020).

    [122] Hsiao H H, Hsu Y C, Liu A Y et al. Ultrasensitive refractive index sensing based on the quasi-bound states in the continuum of all-dielectric metasurfaces[J]. Advanced Optical Materials, 10, 2200812(2022).

    [123] Liu X Y, Chen W, Ma Y J et al. Enhancing THz fingerprint detection on the planar surface of an inverted dielectric metagrating[J]. Photonics Research, 10, 2836-2845(2022).

    [124] Maksimov D N, Gerasimov V S, Bogdanov A A et al. Enhanced sensitivity of an all-dielectric refractive index sensor with an optical bound state in the continuum[J]. Physical Review A, 105, 033518(2022).

    [125] Leitis A, Tittl A, Liu M K et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Science Advances, 5, eaaw2871(2019).

    [126] Liu Z C, Guo T B, Tan Q et al. Phase interrogation sensor based on all-dielectric BIC metasurface[J]. Nano Letters, 23, 10441-10448(2023).

    [127] Aigner A, Weber T, Wester A et al. Continuous spectral and coupling-strength encoding with dual-gradient metasurfaces[J]. Nature Nanotechnology, 19, 1804-1812(2024).

    [128] Richter F U, Sinev I, Zhou S L et al. Gradient high-Q dielectric metasurfaces for broadband sensing and control of vibrational light-matter coupling[J]. Advanced Materials, 36, 2314279(2024).

    [129] Jangid P, Richter F U, Tseng M L et al. Spectral tuning of high-harmonic generation with resonance-gradient metasurfaces[J]. Advanced Materials, 36, 2307494(2024).

    [130] Abdel-Megied A M, Hanafi R S, Aboul-Enein H Y. A chiral enantioseparation generic strategy for anti-Alzheimer and antifungal drugs by short end injection capillary electrophoresis using an experimental design approach[J]. Chirality, 30, 165-176(2018).

    [131] Hu J, Lawrence M, Dionne J A. High quality factor dielectric metasurfaces for ultraviolet circular dichroism spectroscopy[J]. ACS Photonics, 7, 36-42(2020).

    [132] Zhou W P, Ruan Y P, Wu H D et al. Magnetic-free chiral eigenmode spectroscopy for simultaneous sensitive measurement of optical rotary dispersion and circular dichroism[J]. eLight, 4, 12(2024).

    [133] Tang Y Q, Cohen A E. Optical chirality and its interaction with matter[J]. Physical Review Letters, 104, 163901(2010).

    [134] Tang Y Q, Cohen A E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light[J]. Science, 332, 333-336(2011).

    [135] Wu T, Zhang W X, Zhang H Z et al. Vector exceptional points with strong superchiral fields[J]. Physical Review Letters, 124, 083901(2020).

    [136] Solomon M, Hu J, Lawrence M et al. Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces[J]. ACS Photonics, 6, 43-49(2019).

    [137] Biswas A, Cencillo-Abad P, Chanda D. Multispectral molecular chiral barcoding[J]. Advanced Materials, 36, 2409565(2024).

    [138] Chen Y, Chen W J, Kong X H et al. Can weak chirality induce strong coupling between resonant states?[J]. Physical Review Letters, 128, 146102(2022).

    [139] Lv W J, Qin H Y, Su Z P et al. Robust generation of intrinsic C points with magneto-optical bound states in the continuum[J]. Science Advances, 10, eads0157(2024).

    [140] Zhao X Q, Wang J J, Liu W Z et al. Spin-orbit-locking chiral bound states in the continuum[J]. Physical Review Letters, 133, 036201(2024).

    [141] Joseph S, Sarkar S, Khan S et al. Exploring the optical bound state in the continuum in a dielectric grating coupled plasmonic hybrid system[J]. Advanced Optical Materials, 9, 2001895(2021).

    [142] Azzam S I, Shalaev V M, Boltasseva A et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems[J]. Physical Review Letters, 121, 253901(2018).

    [143] Joseph S, Sarkar S, Joseph J. Grating-coupled surface plasmon-polariton sensing at a flat metal: analyte interface in a hybrid-configuration[J]. ACS Applied Materials & Interfaces, 12, 46519-46529(2020).

    [144] Chen H R, Wang H F, Wong K Y et al. High-Q localized surface plasmon resonance based on bound states in the continuum for enhanced refractive index sensing[J]. Optics Letters, 47, 609-612(2022).

    [145] Luo M, Zhou Y, Zhao X Y et al. High-sensitivity optical sensors empowered by quasi-bound states in the continuum in a hybrid metal-dielectric metasurface[J]. ACS Nano, 18, 6477-6486(2024).

    [146] Jahani Y, Arvelo E R, Yesilkoy F et al. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles[J]. Nature Communications, 12, 3246(2021).

    [147] Shi Y Z, Wu Y F, Chin L K et al. Multifunctional virus manipulation with large-scale arrays of all-dielectric resonant nanocavities[J]. Laser & Photonics Reviews, 16, 2100197(2022).

    [148] Yang S, Ndukaife J C. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface[J]. Light: Science & Applications, 12, 188(2023).

    [149] Wang Y F, Ali M A, Chow E K C et al. An optofluidic metasurface for lateral flow-through detection of breast cancer biomarker[J]. Biosensors and Bioelectronics, 107, 224-229(2018).

    [150] Zito G, Sanità G, Alulema B G et al. Label-free DNA biosensing by topological light confinement[J]. Nanophotonics, 10, 4279-4287(2021).

    [151] Jin J C, Yin X F, Ni L F et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019).

    [152] Barth I, Conteduca D, Dong P et al. Phase noise matching in resonant metasurfaces for intrinsic sensing stability[J]. Optica, 11, 354-361(2024).

    [153] Vaisocherová H, Brynda E, Homola J. Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications[J]. Analytical and Bioanalytical Chemistry, 407, 3927-3953(2015).

    Xiaofeng Rao, Tao He, Chengfeng Li, Chao Feng, Zhanshan Wang, Yuzhi Shi, Xinbin Cheng. Research Progress in Metaphotonic Biosensors Based on Bound States in the Continuum (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(6): 0616001
    Download Citation