[1] Chen C L P, Li H, Wei Y, et al. A local contrast method for small infrared target detection [J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 52(1): 574-581.
[2] Yang C, Ma J, Qi S, et al. Directional support value of gaussian transformation for infrared small target detection [J]. Applied Optics, 2015, 54(9): 2255-2265.
[3] Dehghani A, Pourmohammad A. Small target detection and tracking based on the background elimination and Kalman filter [C]. International symposium on artificial intelligence and signal processing, 2015:328-333.
[4] Qi H, Mo B, Liu F, et al. Small infrared target detection utilizing local region similarity difference map [J]. Infrared Physics & Technology, 2015, 71: 131-139.
[5] Deshpande S D, Er M H, Venkateswarlu R, et al. Max-mean and max-median filters for detection of small targets [C]. SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, 1999,3809:10.
[6] Bai X, Zhou F. Analysis of new top-hat transformation and the application for infrared dim small target detection [J]. Pattern Recognition, 2010, 43(6): 2145-2156.
[7] Wang P, Tian J W, Gao C Q. Infrared small target detection using directional highpass filters based on ls-svm [J]. Electronics Letters, 2009, 45(3): 156-158.
[8] LI L, TANG Y Y. Wavelet-hough transform with applications in edge and target detections [J]. International Journal of Wavelets Multiresolution & Information Processing, 2006, 4(03): 567-587.
[11] Ren S, He K, Girshick R, et al. Faster r-cnn: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[12] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection [C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016:779-788.
[13] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detectorultibox detector [C]. European conference on computer vision, 2016:21-37.
[14] Hu J, Shen L, Sun G. Squeeze-and-excitation networks [J]. arXiv preprint arXiv:170901507, 2017, 7.
[15] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2015:3431-3440.
[16] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation [C]. IEEE International Conference on Computer Vision, 2015:1520-1528.
[17] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: Visualising image classification models and saliency maps [J]. arXiv preprint arXiv:13126034, 2013.
[18] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016:770-778.
[19] Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-ResNet and the impact of residual Connections on Learning [C]. AAAI, 2017,4:12.
[20] Srivastava R K, Greff K, Schmidhuber J. Training very deep networks [C]. Advances in neural information processing systems, 2015:2377-2385.
[21] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.