• Laser & Optoelectronics Progress
  • Vol. 59, Issue 24, 2428004 (2022)
Gen Zhang1,2,3, Xiaohui Ding1,3,*, Ji Yang1,3, and Hua Wang2
Author Affiliations
  • 1Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
  • 2School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • 3Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China
  • show less
    DOI: 10.3788/LOP202259.2428004 Cite this Article Set citation alerts
    Gen Zhang, Xiaohui Ding, Ji Yang, Hua Wang. Hyperspectral Remote Sensing Classification Using Multi-Scale Adaptive Capsule Network[J]. Laser & Optoelectronics Progress, 2022, 59(24): 2428004 Copy Citation Text show less
    Flowchart of dynamic routing algorithm
    Fig. 1. Flowchart of dynamic routing algorithm
    MSCaps architecture
    Fig. 2. MSCaps architecture
    Flowchart of adaptive routing algorithm without iteration
    Fig. 3. Flowchart of adaptive routing algorithm without iteration
    Experimental dataset 1. (a) PU dataset; (b) ground truth of PU dataset
    Fig. 4. Experimental dataset 1. (a) PU dataset; (b) ground truth of PU dataset
    Experimental dataset 2. (a) SA dataset; (b) ground truth of SA dataset
    Fig. 5. Experimental dataset 2. (a) SA dataset; (b) ground truth of SA dataset
    Network architectures of MSCNN and MSCaps
    Fig. 6. Network architectures of MSCNN and MSCaps
    Classification accuracy under different input sizes
    Fig. 7. Classification accuracy under different input sizes
    Classification results of different algorithms on PU dataset
    Fig. 8. Classification results of different algorithms on PU dataset
    Classification results of different algorithms on SA dataset
    Fig. 9. Classification results of different algorithms on SA dataset
    Training time of each model on PU and SA datasets
    Fig. 10. Training time of each model on PU and SA datasets
    Class No.Land coverTrainingValidationTest
    1Asphalt100010004631
    2Meadows1000100116650
    3Gravel4604611180
    4Trees8908911285
    5Painted metal sheets400401546
    6Bare Soil100010013030
    7Bitumen400401531
    8Self-Blocking Bricks100010011683
    9Shadows260261428
    Table 1. Number of training, verification, and test samples of various types of objects on PU dataset
    Class No.Land coverTrainingValidationTest
    1Brocoli_green_weeds_1100100191
    2Corn_senesced_green_weeds390390563
    3Lettuce_romaine_4wk150150316
    4Lettuce_romaine_5wk470470585
    5Lettuce_romaine_6wk210210254
    6Lettuce_romaine_7wk250250299
    Table 2. Number of training, verification, and test samples of various types of objects on SA dataset
    No.Accuracy /%
    SVMRFPCA-SVMPCA-RFCNNCapsNetMCapsARWI-CapsMSCNNMSCaps
    199.2198.8999.3897.5699.3798.0599.0999.4299.4499.49
    298.9998.3298.8798.2499.7899.9699.9399.9799.5199.97
    376.3279.9476.8389.7776.3995.3596.1998.4998.4598.31
    495.9189.5895.8687.1098.9692.7695.4695.7799.7497.15
    599.8599.4899.8599.8599.9396.1398.8299.7099.5699.85
    690.1281.4289.8682.9898.1398.4599.4199.8399.2399.84
    792.3888.3592.5296.3898.3099.3399.2599.8998.8199.92
    893.3991.3193.4589.6897.6497.8899.4899.5198.1799.62
    910099.7910099.8999.5897.1597.9599.6898.0399.89
    OA /%91.6087.3891.8688.4495.8496.7398.2298.9698.7199.14
    K0.820.740.840.760.910.930.960.970.970.99
    p0.050.00.050.050.050.050.050.0111.501×10-5
    Table 3. Accuracy, overall accuracy, Kappa coefficient (K), and p-value of different algorithms on PU dataset
    No.Accuracy /%
    SVMRFPCA-SVMPCA-RFCNNCapsNetMCapsARWI-CapsMSCNNMSCaps
    110010010010099.7410098.7396.54100100
    210097.0899.2696.9993.26100100100100100
    399.8499.8399.8810093.92100100100100100
    499.3599.0999.3598.5899.0890.5599.7499.8799.5499.87
    587.5365.3186.8671.1793.4898.3989.9996.7096.70100
    672.7080.7573.6492.2684.3687.7189.9292.1588.9688.88
    OA/%81.5773.4182.1382.2185.0187.2792.1695.1094.0795.38
    K0.660.520.690.670.720.760.850.900.890.91
    p0.050.050.050.050.050.050.050.0330.025
    Table 4. Accuracy, overall accuracy, Kappa coefficient (K), and p-value of different algorithms on SA dataset
    Gen Zhang, Xiaohui Ding, Ji Yang, Hua Wang. Hyperspectral Remote Sensing Classification Using Multi-Scale Adaptive Capsule Network[J]. Laser & Optoelectronics Progress, 2022, 59(24): 2428004
    Download Citation