• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 3, 32010 (2023)
1,*, 1, 1,2, 2..., 1 and 1|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Shaw Technical Science Building, Beijing, Haidian District 100084, People’s Republic of China
  • 2Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
  • show less
    DOI: 10.1088/2631-7990/acd88d Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Radiofrequency sensing systems based on emerging two-dimensional materials and devices[J]. International Journal of Extreme Manufacturing, 2023, 5(3): 32010 Copy Citation Text show less
    References

    [1] Lee H J and Yook J G 2014 Recent research trends of radio-frequency biosensors for biomolecular detection Biosens. Bioelectron. 61 448–59

    [2] Bobrowski T and Schuhmann W 2018 Long-term implantable glucose biosensors Curr. Opin. Electrochem. 10 112–9

    [3] Yue W, KimES,ZhuBH,ChenJ,LiangJGandKimNY 2021 Permittivity-inspired microwave resonator-based biosensor based on integrated passive device technology for glucose idenTIFICATion Biosensors 11 508

    [4] Kassal P, Steinberg M D and Steinberg I M 2018 Wireless chemical sensors and biosensors: a review Sens. Actuators 266 228–45

    [5] Oikonomou P et al 2016 A wireless sensing system for monitoring the workplace environment of an industrial installation Sens. Actuators 224 266–74

    [6] Bibi F, Guillaume C, Gontard N and Sorli B 2017 A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products Trends Food Sci. Technol. 62 91–103

    [7] Asad M and Sheikhi M H 2016 Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials Sens. Actuators 231 474–83

    [8] Lee J S, Oh J, Jun J and Jang J 2015 Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag ACS Nano 9 7783–90

    [9] Akbari M, Virkki J, Syd.nheimo L and Ukkonen L 2016 Toward graphene-based passive UHF RFID textile tags: a reliability study IEEE Trans. Device Mater. Reliab. 16 429–31

    [10] Leng T, Huang X J, Chang K, Chen J, Abdalla M A and Hu Z R 2016 Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications IEEE Antennas Wirel. Propag. Lett. 15 1565–8

    [11] Manzari S and Marrocco G 2014 Modeling and applications of a chemical-loaded UHF RFID sensing antenna with tuning capability IEEE Trans. Antennas Propag. 62 94–101

    [12] Ku M,KimJ,Won JE,KangW, ParkYG,ParkJ,LeeJH, Cheon J, Lee H H and Park J U 2020 Smart, soft contact lens for wireless immunosensing of cortisol Sci. Adv. 6 eabb2891

    [13] Aguzzi J, Sbragagliá V, Sarria D, García J A, Costa C, Del RíoJ, M`anuel A, Menesatti P and Sard`a F 2011 A new laboratory radio frequency identification (RFID) system for behavioural tracking of marine organisms Sensors 11 9532–48

    [14] Ruhanen A, Hanhikorpi M, Bertuccelli F, Colonna A, Malik W, Ranasinghe D, López T S, Yan N and Tavilampi M 2008 Sensor-enabled RFID tag handbook (Germany: BRIDGE)

    [15] Kim S G, Jun J, Lee J S and Jang J 2019 A highly sensitive wireless nitrogen dioxide gas sensor based on an organic conductive nanocomposite paste J. Mater. Chem. A 7 8451–9

    [16] Huang X J, Leng T, Georgiou T, Abraham J, Raveendran Nair R, Novoselov K S and Hu Z R 2018 Graphene oxide dielectric permittivity at GHz and its applications for wireless humidity sensing Sci. Rep. 8 43

    [17] AnBW et al 2017 Smart sensor systems for wearable electronic devices Polymers 9 303

    [18] Zeng S F, Tang Z W, Liu C S and Zhou P 2021 Electronics based on two-dimensional materials: status and outlook Nano Res. 14 1752–67

    [19] Matta L L, Karuppuswami S, Chahal P and Alocilja E C 2018 AuNP-RF sensor: an innovative application of RF technology for sensing pathogens electrically in liquids (SPEL) within the food supply chain Biosens. Bioelectron. 111 152–8

    [20] Mannoor M S, Tao H, Clayton J D, Sengupta A, Kaplan D L, Naik R R, Verma N, Omenetto F G and Mcalpine M C 2013 Graphene-based wireless bacteria detection on tooth enamel Nat. Commun. 4 1900

    [21] Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 A roadmap for graphene Nature 490 192–200

    [22] Chang H Y, Yogeesh M N, Ghosh R, Rai A, Sanne A, Yang S X, Lu N S, Banerjee S K and Akinwande D 2016 Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime Adv. Mater. 28 1818–23

    [23] Kuila T, Bose S, Khanra P, Mishra A K, Kim N H and Lee J H 2011 Recent advances in graphene-based biosensors Biosens. Bioelectron. 26 4637–48

    [24] Liao L and Duan X 2012 Graphene for radio frequency electronics Mater. Today 15 328–38

    [25] Xu K C, Fujita Y, Lu Y Y, Honda S, Shiomi M, Arie T, Akita S and Takei K 2021 A wearable body condition sensor system with wireless feedback alarm functions Adv. Mater. 33 2008701

    [26] ChoiC,LeeY, ChoKW, Koo JHandKimDH2019 Wearable and implantable soft bioelectronics using two-dimensional materials Acc. Chem. Res. 52 73–81

    [27] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 The electronic properties of graphene Rev. Mod. Phys. 81 109–62

    [28] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9

    [29] Lee H J and Yook J G 2019 Graphene nanomaterials-based radio-frequency/microwave biosensors for biomaterials detection Materials 12 952

    [30] GaoQG,ZhangZF, XuXL,SongJ,LiXFandWu YQ 2018 Scalable high performance radio frequency electronics based on large domain bilayer MoS2 Nat. Commun. 9 4778

    [31] Huang M N, Gu Z Y, Zhang J G, Zhang D, Zhang H, Yang Z G and Qu J L 2021 MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives J. Mater. Chem. B 9 5195–220

    [32] Wang C L, Song Y L and Huang H 2022 Evolution application of two-dimensional MoS2-based field-effect transistors Nanomaterials 12 3233

    [33] Ronkainen N J, Halsall H B and Heineman W R 2010 Electrochemical biosensors Chem. Soc. Rev. 39 1747–63

    [34] Park B, Park H G, Ji J H, Cho J and Jun S C 2016 A reduced graphene oxide based radio frequency glucose sensing device using multi-dimensional parameters Micromachines 7 136

    [35] Yogeesh M N, Parrish K N, Lee J, Park S, Tao L and Akinwande D 2015 Towards the realization of graphene based flexible radio frequency receiver Electronics 4 933–46

    [36] Pallecchi E, Wilmart Q, Betz A C, Jhang S H, Fève G, Berroir J M, Lepillet S, Dambrine G, Happy H and Pla.ais B 2014 Graphene nanotransistors for RF charge detection J. Phys. D: Appl. Phys. 47 094004

    [37] MaMS,KhanH,ShanW, WangYC,OuJZ,LiuZF, Kalantar-Zadeh K and Li Y X 2017 A novel wireless gas sensor based on LTCC technology Sens. Actuators 239 711–7

    [38] He P, Cao M S, Cao W Q and Yuan J 2021 Developing MXenes from wireless communication to electromagnetic attenuation Nano-Micro Lett. 13 115

    [39] Sindhu B, Adepu V, Sahatiya P and Nandi S 2022 An MXene based flexible patch antenna for pressure and level sensing applications FlatChem 33 100367

    [40] Shao Y Z et al 2022 Room-temperature high-precision printing of flexible wireless electronics based on MXene inks Nat. Commun. 13 3223

    [41] DongZY, LiZP, YangFY, QiuCWandHoJS2019 Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point Nat. Electron. 2 335–42

    [42] Charkhabi S, Jackson K J, Beierle A M, Carr A R, Zellner E M and Reuel N F 2021 Monitoring wound health through bandages with passive LC resonant sensors ACS Sens. 6 111–22

    [43] Yang C, Wang X Y and Mao S W 2021 Respiration monitoring with RFID in driving environments IEEE J. Sel. Areas Commun. 39 500–12

    [44] Shan H Y, Peterson J III, Hathorn S and Mohammadi S 2018 The RFID connection: RFID technology for sensing and the internet of things IEEE Microw. Mag. 19 63–79

    [45] XuG,ZhangQ,LuYL,LiuL,JiDZ,LiSandLiuQJ2017 Passive and wireless near field communication tag sensors for biochemical sensing with smartphone Sens. Actuators 246 748–55

    [46] Tanguy N R, Wiltshire B, Arjmand M, Zarifi M H and Yan N 2020 Highly sensitive and contactless ammonia detection based on nanocomposites of phosphate-functionalized reduced graphene oxide/polyaniline immobilized on microstrip resonators ACS Appl. Mater. Interfaces 12 9746–54

    [47] Arsat R, Breedon M, Shafiei M, Spizziri P G, Gilje S, Kaner R B, Kalantar-Zadeh K and Wlodarski W 2009 Graphene-like nano-sheets for surface acoustic wave gas sensor applications Chem. Phys. Lett. 467 344–7

    [48] Ji Q M, Honma I, Paek S M, Akada M, Hill J P, Vinu A and Ariga K 2010 Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing Angew. Chem., Int. Ed. 49 9737–9

    [49] XiaXY,GuoSB,ZhaoW,XuPC,YuHT,XuTGandLiX 2014 Carboxyl functionalized gold nanoparticles in situ grown on reduced graphene oxide for micro-gravimetric ammonia sensing Sens. Actuators B 202 846–53

    [50] Kim J et al 2017 Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics Nat. Commun. 8 14997

    [51] GuoSQ et al 2021 Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors Matter 4 969–85

    [52] Yang S M et al 2022 Hetero-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system Adv. Mater. 34 2108203

    [53] Guo S Q, Yang D, Zhang S, Dong Q, Li B C, Tran N, Li Z Y, Xiong Y J and Zaghloul M E 2019 Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing Adv. Funct. Mater. 29 1900138

    [54] Salpavaara T, Verho J, Kumpulainen P and Lekkala J 2010 Wireless interrogation techniques for sensors utilizing inductively coupled resonance circuits Proc. Eng. 5 216–9

    [55] Salpavaara T, Verho J, Kumpulainen P and Lekkala J 2011 Readout methods for an inductively coupled resonance sensor used in pressure garment application Sens. Actuators A 172 109–16

    [56] Jacquemod G, Nowak M, Colinet E, Delorme N and Conseil F 2010 Novel architecture and algorithm for remote interrogation of battery-free sensors Sens. Actuators A 160 125–31

    [57] Ren Q Y, Wang L F, Huang J Q, Zhang C and Huang Q A 2015 Simultaneous remote sensing of temperature and humidity by LC-type passive wireless sensors J. Microelectromech. Syst. 24 1117–23

    [58] Boada M, Lazaro A, Villarino R and Girbau D 2019 Battery-less NFC sensor for pH monitoring IEEE Access 7 33226–39

    [59] MaZ,ChenP, ChengW, Yan K,Pan LJ,ShiYandYu GH 2018 Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection Nano Lett. 18 4570–5

    [60] Azzarelli J M, Mirica K A, Ravnsb.k J B and Swager T M 2014 Wireless gas detection with a smartphone via rf communication Proc. Natl Acad. Sci. USA 111 18162–6

    [61] DeHennis A, Getzlaff S, Grice D and Mailand M 2016 An NFC-enabled CMOS IC for a wireless fully implantable glucose sensor IEEE J. Biomed. Health Inform. 20 18–28

    [62] Zhang Y, Ma R, Zhen X V, Kudva Y C, Bühlmann P and Koester S J 2017 Capacitive sensing of glucose in electrolytes using graphene quantum capacitance varactors ACS Appl. Mater. Interfaces 9 38863–9

    [63] Kulkarni G S, Reddy K, Zhong Z H and Fan X D 2014 Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection Nat. Commun. 5 4376

    [64] Puebla-Hellmann G F 2012 DC, Microwave and Optical Measurement Schemes for Nano-Scale Devices (Zurich: ETH Zurich)

    [65] Chen W Y, Yermembetova A, Washer B M, Jiang X F, Shuvo S N, Peroulis D, Wei A and Stanciu L A 2020 Selective detection of ethylene by MoS2–carbon nanotube networks coated with Cu(I)–pincer complexes ACS Sens. 5 1699–706

    [66] Deen D A, Olson E J, Ebrish M A and Koester S J 2014 Graphene-based quantum capacitance wireless vapor sensors IEEE Sens. J. 14 1459–66

    [67] GaoJM,QinJQ,ChangJY, LiuHQ,Wu ZSandFengL 2020 NH3 sensor based on 2D wormlike polypyrrole/graphene heterostructures for a self-powered integrated system. ACS Appl. Mater. Interfaces 12 38674–81

    [68] Kulagina N V, Shaffer K M, Anderson G P, Ligler F S and Taitt C R 2006 Antimicrobial peptide-based array for Escherichia coli and Salmonella screening Anal. Chim. Acta 575 9–15

    [69] Mannoor M S, Zhang S Y, Link A J and McAlpine M C 2010 Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides Proc. Natl Acad. Sci. USA 107 19207–12

    [70] YangM,ZhangWM,LiL,HanLP, ChenXW, YangRC and Zeng Q S 2017 A resistance-type sensor based on chipless RFID IEEE Trans. Antennas Propag. 65 3319–25

    [71] Xia J L, Chen F, Li J H and Tao N J 2009 Measurement of the quantum capacitance of graphene Nat. Nanotechnol. 4 505–9

    [72] Zhan C, Neal J, Wu J Z and Jiang D E 2015 Quantum effects on the capacitance of graphene-based electrodes J. Phys. Chem. C 119 22297–303

    [73] Kulkarni G S, Zang W Z and Zhong Z 2016 Nanoelectronic heterodyne sensor: a new electronic sensing paradigm Acc. Chem. Res. 49 2578–86

    [74] Choi H D, Park Y, Cho K, Rhee B K and Hong J M 2011 Highly sensitive oxygen gas sensor using surface plasmon with a common path homodyne interferometer Opt. Commun. 284 4588–91

    [75] Wang C, Zhang B, Li Y and Zhao X N 2020 Suspended graphene hydroacoustic sensor for broadband underwater wireless communications IEEE Wirel. Commun. 27 44–52

    [76] Stern E, Wagner R, Sigworth F J, Breaker R, Fahmy T M and Reed M A 2007 Importance of the Debye screening length on nanowire field effect transistor sensors Nano Lett. 7 3405–9

    [77] Nair P R and Alam M A 2008 Screening-limited response of nanobiosensors Nano Lett. 8 1281–5

    [78] Sorgenfrei S, Chiu C Y, Johnston M, Nuckolls C and Shepard K L 2011 Debye screening in single-molecule carbon nanotube field-effect sensors Nano Lett. 11 3739–43

    [79] Smith A M, Lee A A and Perkin S 2016 The electrostatic screening length in concentrated electrolytes increases with concentration J. Phys. Chem. Lett. 7 2157–63

    [80] Zhang X Y et al 2022 Dielectric-modulated biosensing with ultrahigh-frequency-operated graphene field-effect transistors Adv. Mater. 34 2106666

    [81] Kulkarni G S and Zhong Z H 2012 Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor Nano Lett. 12 719–23

    [82] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Giant intrinsic carrier mobilities in graphene and its bilayer Phys. Rev. Lett. 100 016602

    [83] Geim A K and Novoselov K S 2007 The rise of graphene Nat. Mater. 6 183–91

    [84] Huang X J, Leng T, Chang K H, Chen J C, Novoselov K S and Hu Z R 2016 Graphene radio frequency and microwave passive components for low cost wearable electronics 2D Mater. 3 025021

    [85] Gómez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S, Burghard M, Kern K and Kaiser U 2010 Atomic structure of reduced graphene oxide Nano Lett. 10 1144–8

    [86] ZhuYW, MuraliS,CaiWW, LiXS,SukJW, PottsJRand Ruoff R S 2010 Graphene and graphene oxide: synthesis, properties, and applications Adv. Mater. 22 3906–24

    [87] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nat. Nanotechnol. 7 699–712

    [88] KimTH,KimYH,ParkSY, KimSYandJangHW2017 Two-dimensional transition metal disulfides for chemoresistive gas sensing: perspective and challenges Chemosensors 5 15

    [89] SunYF, LiuSB,MengFL,LiuJY, JinZ,KongLTand Liu J H 2012 Metal oxide nanostructures and their gas sensing properties: a review Sensors 12 2610–31

    [90] Dral A P and Ten Elshof J E 2018 2D metal oxide nanoflakes for sensing applications: review and perspective Sens. Actuators B 272 369–92

    [91] Kumbhakar P et al 2021 Emerging 2D metal oxides and their applications Mater. Today 45 142–68

    [92] Alwarappan S, Nesakumar N, Sun D L, Hu T Y and Li C Z 2022 2D metal carbides and nitrides (MXenes) for sensors and biosensors Biosens. Bioelectron. 205 113943

    [93] Mortazavi Zanjani S M, Holt M, Sadeghi M M, Rahimi S and Akinwande D 2017 3D integrated monolayer graphene–Si CMOS RF gas sensor platform npj 2D Mater. Appl. 1 36

    [94] HuangYQ,YinJC,WangYS,XiaoXL,ZhouB,XueJH, TangX, Wang X F, ZhuYF and Chen SH 2016 Streptavidin and gold nanoparticles-based dual signal amplification for sensitive magnetoelastic sensing of mercury using a specific aptamer probe Sens. Actuators 235 507–14

    [95] SuSJ,LvW, ZhangT, Tan QL,ZhangWDandXiongJJ 2018 A MoS2 nanoflakes-based LC wireless passive humidity sensor Sensors 18 4466

    [96] ChangCH,ChouTC,ChenWC,NiuJS,LinKW, Cheng S Y, Tsai J H and Liu W C 2020 Study of a WO3 thin film based hydrogen gas sensor decorated with platinum nanoparticles Sens. Actuators 317 128145

    [97] Potyrailo R A et al 2020 Extraordinary performance of semiconducting metal oxide gas sensors using dielectric excitation Nat. Electron. 3 280–9

    [98] GuoT, ZhouTH,Tan QL,GuoQQ,LuFXandXiongJJ 2018 A room-temperature CNT/Fe3O4 based passive wireless gas sensor Sensors 18 3542

    [99] Xu H L, Zhang Z Y and Peng L M 2011 Measurements and microscopic model of quantum capacitance in graphene Appl. Phys. Lett. 98 133122

    [100] Fang T, Konar A, Xing H L and Jena D 2007 Carrier statistics and quantum capacitance of graphene sheets and ribbons Appl. Phys. Lett. 91 092109

    [101] Meng Z, Stolz R M, Mendecki L and Mirica K A 2019 Electrically-transduced chemical sensors based on two-dimensional nanomaterials Chem. Rev. 119 478–598

    [102] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Ultrahigh electron mobility in suspended graphene Solid State Commun. 146 351–5

    [103] Kim J, Cote L J, Kim F, Yuan W, Shull K R and Huang J X 2010 Graphene oxide sheets at interfaces J. Am. Chem. Soc. 132 8180–6

    [104] Goenka S, Sant V and Sant S 2014 Graphene-based nanomaterials for drug delivery and tissue engineering J. Control. Release 173 75–88

    [105] Andersson M A, Habibpour O, Vukusic J and Stake J 2012 10 dB small-signal graphene FET amplifier Electron. Lett. 48 861–3

    [106] Wang H, Nezich D, Kong J and Palacios T 2009 Graphene frequency multipliers IEEE Electron Device Lett. 30 547–9

    [107] Hajizadegan M, Sakhdari M, Zhu L, Cui Q S, Huang H Y, Cheng M M C, Hung J C H and Chen P Y 2017 Graphene sensing modulator: toward low-noise, self-powered wireless microsensors IEEE Sens. J. 17 7239–47

    [108] Ebrish M A, Olson E J and Koester S J 2014 Effect of noncovalent basal plane functionalization on the quantum capacitance in graphene ACS Appl. Mater. Interfaces 6 10296–303

    [109] Hao Z, Pan Y L, Shao W W, Lin Q and Zhao X Z 2019 Graphene-based fully integrated portable nanosensing system for on-line detection of cytokine biomarkers in saliva Biosens. Bioelectron. 134 16–23

    [110] Koester S J 2011 High quality factor graphene varactors for wireless sensing applications Appl. Phys. Lett. 99 163105

    [111] Lee M S et al 2013 High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures Nano Lett. 13 2814–21

    [112] Jang J et al 2021 Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles Sci. Adv. 7 eabf7194

    [113] Abozeid M A, Hassan H S, Morsi I and Kashyout A B 2019 Development of nano-WO3 doped with NiO for wireless gas sensors Arab. J. Sci. Eng. 44 647–54

    [114] Cai B J, Wang S T, Huang L, Ning Y, Zhang Z Y and Zhang G J 2014 Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor ACS Nano 8 2632–8

    [115] ToiPT, TrungTQ,DangTML,BaeCWandLeeNE 2019 Highly electrocatalytic, durable, and stretchable nanohybrid fiber for on-body sweat glucose detection ACS Appl. Mater. Interfaces 11 10707–17

    [116] Caccami M C, Mulla M Y S, Di Natale C and Marrocco G 2018 Graphene oxide-based radiofrequency identification wearable sensor for breath monitoring IET Microw. Antennas Propag. 12 467–71

    [117] Shiomi M, Mochizuki Y, Imakita Y, Arie T, Akita S and Takei K 2019 Graphene and carbon nanotube heterojunction transistors with individual gate control ACS Nano 13 4771–7

    [118] Lee I et al 2019 Ultrahigh gauge factor in graphene/MoS2 heterojunction field effect transistor with variable Schottky barrier ACS Nano 13 8392–400

    [119] Tabata H, Sato Y, Oi K, Kubo O and Katayama M 2018 Bias-and gate-tunable gas sensor response originating from modulation in the Schottky barrier height of a graphene/MoS2 van der Waals heterojunction ACS Appl. Mater. Interfaces 10 38387–93

    [120] WangXY, GuD,LiXG,LinSW, ZhaoSH, Rumyantseva M N and Gaskov A M 2019 Reduced graphene oxide hybridized with WS2 nanoflakes based heterojunctions for selective ammonia sensors at room temperature Sens. Actuators 282 290–9

    [121] Pargoletti E, Hossain U H, Di Bernardo I, Chen H J, Tran-Phu T, Cappelletti G and Cappelletti G 2019 Room-temperature photodetectors and VOC sensors based on graphene oxide–ZnO nano-heterojunctions Nanoscale 11 22932–45

    [122] He J, Xiao P, Shi J W, Liang Y, Lu W, Chen Y S, Wang W Q, Théato P, Kuo S W and Chen T 2018 High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction Chem. Mater. 30 4343–54

    [123] Park S Y et al 2018 Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites J. Mater. Chem. A 6 5016–24

    [124] HuoZW, WeiYC,WangYF, WangZLandSunQJ2022 Integrated self-powered sensors based on 2D material devices Adv. Funct. Mater. 32 2206900

    [125] Zhao Q N et al 2022 Edge-enriched Mo2TiC2Tx/MoS2 heterostructure with coupling interface for selective NO2 monitoring Adv. Funct. Mater. 32 2203528

    [126] LiuGB,XiaoD,Yao YG,XuXDandYao W2015 Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides Chem. Soc. Rev. 44 2643–63

    [127] Liu L J, Ikram M, Ma L F, Zhang X Y, Lv H, Ullah M, Khan M, Yu H T and Shi K Y 2020 Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature J. Hazard Mater. 393 122325

    [128] OuJZ et al 2015 Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing ACS Nano 9 10313–23

    [129] ChoSY, KimSJ,LeeY, KimJS,JungWB,Yoo HW, Kim J and Jung H T 2015 Highly enhanced gas adsorption properties in vertically aligned MoS2 layers ACS Nano 9 9314–21

    [130] NgHK et al 2022 Improving carrier mobility in two-dimensional semiconductors with rippled materials Nat. Electron. 5 489–96

    [131] Lv W, Tan Q L, Kou H R, Zhang W D and Xiong J J 2019 MWCNTs/WS2 nanocomposite sensor realized by LC wireless method for humidity monitoring Sens. Actuators A 290 207–14

    [132] Barsan N and Weimar U 2001 Conduction model of metal oxide gas sensors J. Electroceram. 7 143–67

    [133] Chwieroth B, Patton B R and Wang Y Z 2001 Conduction and gas–surface reaction modeling in metal oxide gas sensors J. Electroceram. 6 27–41

    [134] Wang C X, Yin L W, Zhang L Y, Xiang D and Gao R 2010 Metal oxide gas sensors: sensitivity and influencing factors Sensors 10 2088–106

    [135] Chen J, Xu L, Li W and Gou X 2005 α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications Adv. Mater. 17 582–6

    [136] Choi S J, Jang B H, Lee S J, Min B K, Rothschild A and Kim I D 2014 Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets ACS Appl. Mater. Interfaces 6 2588–97

    [137] He T T, Liu W, Lv T, Ma M S, Liu Z F, Vasiliev A and Li X G 2021 MXene/SnO2 heterojunction based chemical gas sensors Sens. Actuators 329 129275

    [138] Zhang D Z, Cao Y H, Wu J F and Zhang X X 2020 Tungsten trioxide nanoparticles decorated tungsten disulfide nanoheterojunction for highly sensitive ethanol gas sensing application Appl. Surf. Sci. 503 144063

    [139] Lee H, Lee S, Kim D H, Perello D, Park Y J, Hong S H, Yun M H E and Kim S 2012 Integrating metal-oxide-decorated CNT networks with a CMOS readout in a gas sensor Sensors 12 2582–97

    [140] Lu G H, Ocola L E and Chen J H 2009 Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes Adv. Mater. 21 2487–91

    [141] Yao S S, Swetha P and Zhu Y 2018 Nanomaterial-enabled wearable sensors for healthcare Adv. Healthcare Mater. 7 1700889

    [142] Boland C S et al 2016 Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites Science 354 1257–60

    [143] Asad M, Salimian S, Sheikhi M H and Pourfath M 2015 Flexible phototransistors based on graphene nanoribbon decorated with MoS2 nanoparticles Sens. Actuators A 232 285–91

    [144] ChouJC,Wu CY, LinSH,Kuo PY, LaiCH,NienYH, Wu Y X and Lai T Y 2019 The analysis of the urea biosensors using different sensing matrices via wireless measurement system & microfluidic measurement system Sensors 19 3004

    [145] Kaur G, Tomar M and Gupta V 2017 Nanostructured NiO-based reagentless biosensor for total cholesterol and low density lipoprotein detection Anal. Bioanal. Chem. 409 1995–2005

    [146] Arora K, Tomar M and Gupta V 2011 Highly sensitive and selective uric acid biosensor based on RF sputtered NiO thin film Biosens. Bioelectron. 30 333–6

    [147] Wei L G, Wang P, Yang Y L, Zhan Z S, Dong Y L, Song W N and Fan R Q 2018 Enhanced performance of the dye-sensitized solar cells by the introduction of graphene oxide into the TiO2 photoanode Inorg. Chem. Front. 5 54–62

    [148] KangXL,LiuSH,DaiZD,HeYP, SongXZ andTan ZQ 2019 Titanium dioxide: from engineering to applications Catalysts 9 191

    [149] Xu B Z, Zhi C Y and Shi P 2020 Latest advances in MXene biosensors J. Phys. Mater. 3 031001

    [150] Dai C H, Liu Y Q and Wei D C 2022 Two-dimensional field-effect transistor sensors: the road toward commercialization Chem. Rev. 122 10319–92

    [151] Rathi K, Arkoti N K and Pal K 2022 Fabrication of delaminated 2D metal carbide mxenes (Nb2CTx) by CTAB-based NO2 gas sensor with enhanced stability Adv. Mater. Interfaces 9 2200415

    [152] Yao Y, Han Y T, Zhou M, Xie L L, Zhao X L, Wang Z F, Barasan N and Zhu Z G 2022 MoO3/TiO2/Ti3C2Tx nanocomposite based gas sensors for highly sensitive and selective isopropanol detection at room temperature J. Mater. Chem. A 10 8283–92

    [153] Ibrahim A A, Ahmad R, Umar A, Al-Assiri M S, Al-Salami A E, Kumar R, Ansari S G and Baskoutas S 2017 Two-dimensional ytterbium oxide nanodisks based biosensor for selective detection of urea Biosens. Bioelectron. 98 254–60

    [154] Vlassiouk I V et al 2018 Evolutionary selection growth of two-dimensional materials on polycrystalline substrates Nat. Mater. 17 318–22

    [155] Wang M H et al 2021 Single-crystal, large-area, fold-free monolayer graphene Nature 596 519–24

    [156] Luo D et al 2019 Adlayer-free large-area single crystal graphene grown on a Cu(111) foil Adv. Mater. 31 1903615

    [157] LiJZ et al 2022 Wafer-scale single-crystal monolayer graphene grown on sapphire substrate Nat. Mater. 21 740–7

    [158] Wang J H et al 2022 Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire Nat. Nanotechnol. 17 33–38

    [159] LiTT et al 2021 Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire Nat. Nanotechnol. 16 1201–7

    [160] Wang Y B et al 2017 3D-printed all-fiber Li-ion battery toward wearable energy storage Adv. Funct. Mater. 27 1703140

    [161] Liu Z X et al 2018 Towards wearable electronic devices: a quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability Nano Energy 44 164–73

    [162] Chang J et al 2018 Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium Nat. Commun. 9 4480

    [163] Liu Y M et al 2022 Bandage based energy generators activated by sweat in wireless skin electronics for continuous physiological monitoring Nano Energy 92 106755

    [164] ZengXL,PengRH,Fan ZYandLinYJ2022 Self-powered and wearable biosensors for healthcare Mater. Today Energy 23 100900

    [165] Kim Y, Wu X W, Lee C and Oh J H 2021 Characterization of PI/PVDF-TrFE composite nanofiber-based triboelectric nanogenerators depending on the type of the electrospinning system ACS Appl. Mater. Interfaces 13 36967–75

    [166] Mao Y P, Yue W, Zhao T M, Shen M L, Liu B and Chen S 2020 A self-powered biosensor for monitoring maximal lactate steady state in sport training Biosensors 10 75

    [167] Ho J S, Yeh A J, Neofytou E, Kim S, Tanabe Y, Patlolla B, Beygui R E and Poon A S Y 2014 Wireless power transfer to deep-tissue microimplants Proc. Natl Acad. Sci. USA 111 7974–9

    [168] Caldara M, Colleoni C, Guido E, Re V and Rosace G 2016 Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating Sens. Actuators 222 213–20

    [169] Lorwongtragool P, Sowade E, Watthanawisuth N, Baumann R R and Kerdcharoen T 2014 A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array Sensors 14 19700–12

    [170] Abrar M A, Dong Y, Lee P K and Kim W S 2016 Bendable electro-chemical lactate sensor printed with silver nano-particles Sci. Rep. 6 30565

    [171] Martínez-Olmos A, Fernández-Salmerón J, Lopez-Ruiz N, Rivadeneyra Torres A, Capitan-Vallvey L F and Palma A J 2013 Screen printed flexible radiofrequency identification tag for oxygen monitoring Anal. Chem. 85 11098–105

    [172] Zhang Y P, Liu X T, Qiu S, Zhang Q Q, Tang W, Liu H T, GuoYL, MaYQ, Guo X J and Liu YQ2019 A flexible acetylcholinesterase-modified graphene for chiral pesticide sensor J. Am. Chem. Soc. 141 14643–9

    [173] Garcia-Cortadella R et al 2021 Graphene active sensor arrays for long-term and wireless mapping of wide frequency band epicortical brain activity Nat. Commun. 12 211

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Radiofrequency sensing systems based on emerging two-dimensional materials and devices[J]. International Journal of Extreme Manufacturing, 2023, 5(3): 32010
    Download Citation