• Laser & Optoelectronics Progress
  • Vol. 60, Issue 11, 1106003 (2023)
Guodong Zhao1,2, Xiaotong Lu1,*, and Hong Chang1,2,**
Author Affiliations
  • 1Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, Shaanxi, China
  • 2School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049 China
  • show less
    DOI: 10.3788/LOP223237 Cite this Article Set citation alerts
    Guodong Zhao, Xiaotong Lu, Hong Chang. Research Progress of the Optical Frequency Standard[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106003 Copy Citation Text show less
    References

    [1] Essen L, Parry J V L. An atomic standard of frequency and time interval: a Cæsium resonator[J]. Nature, 176, 280-282(1955).

    [2] Heavner T P, Donley E A, Levi F et al. First accuracy evaluation of NIST-F2[J]. Metrologia, 51, 174-182(2014).

    [3] Chu S, Hollberg L, Bjorkholm J E et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Physical Review Letters, 55, 48-51(1985).

    [4] Salomon C, Hils D, Hall J L. Laser stabilization at the millihertz level[J]. Journal of the Optical Society of America B, 5, 1576-1587(1988).

    [5] Udem T, Reichert J, Holzwarth R et al. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser[J]. Physical Review Letters, 82, 3568-3571(1999).

    [6] Riehle F, Gill P, Arias F et al. The CIPM list of recommended frequency standard values: guidelines and procedures[J]. Metrologia, 55, 188-200(2018).

    [7] Godun R M, Nisbet-Jones P R, Jones J M et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants[J]. Physical Review Letters, 113, 210801(2014).

    [8] Huntemann N, Lipphardt B, Tamm C et al. Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks[J]. Physical Review Letters, 113, 210802(2014).

    [9] Kolkowitz S, Pikovski I, Langellier N et al. Gravitational wave detection with optical lattice atomic clocks[J]. Physical Review D, 94, 124043(2016).

    [10] Wcisło P, Morzyński P, Bober M et al. Experimental constraint on dark matter detection with optical atomic clocks[J]. Nature Astronomy, 1, 9(2017).

    [11] Takamoto M, Ushijima I, Ohmae N et al. Test of general relativity by a pair of transportable optical lattice clocks[J]. Nature Photonics, 14, 411-415(2020).

    [12] Bothwell T, Kennedy C J, Aeppli A et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 602, 420-424(2022).

    [13] Sanner C, Huntemann N, Lange R et al. Optical clock comparison for Lorentz symmetry testing[J]. Nature, 567, 204-208(2019).

    [14] Grotti J, Koller S, Vogt S et al. Geodesy and metrology with a transportable optical clock[J]. Nature Physics, 14, 437-441(2018).

    [15] Takamoto M, Tanaka Y, Katori H. A perspective on the future of transportable optical lattice clocks[J]. Applied Physics Letters, 120, 140502(2022).

    [16] Yin M J, Wang T, Lu X T et al. Rabi spectroscopy and sensitivity of a Floquet engineered optical lattice clock[J]. Chinese Physics Letters, 38, 073201(2021).

    [17] Lu X T, Wang T, Li T et al. Doubly modulated optical lattice clock: interference and topology[J]. Physical Review Letters, 127, 033601(2021).

    [18] Daley A J, Boyd M M, Ye J et al. Quantum computing with alkaline-Earth-metal atoms[J]. Physical Review Letters, 101, 170504(2008).

    [19] Nunn J, Dorner U, Michelberger P et al. Quantum memory in an optical lattice[J]. Physical Review A, 82, 022327(2010).

    [20] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).

    [21] Katori H. Optical lattice clocks and quantum metrology[J]. Nature Photonics, 5, 203-210(2011).

    [22] Al-Masoudi A, Dörscher S, Häfner S et al. Noise and instability of an optical lattice clock[J]. Physical Review A, 92, 063814(2015).

    [23] Dick G J. Local oscillator induced instabilities in trapped ion frequency standards[C](1987).

    [24] Nagourney W, Sandberg J, Dehmelt H. Shelved optical electron amplifier: observation of quantum jumps[J]. Physical Review Letters, 56, 2797-2799(1986).

    [25] Keller J, Ignatovich S, Webster S A et al. Simple vibration-insensitive cavity for laser stabilization at the 10-16 level[J]. Applied Physics B, 116, 203-210(2014).

    [26] Häfner S, Falke S, Grebing C et al. 8×10⁻¹⁷ fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 40, 2112-2115(2015).

    [27] Xia J J, Lu X T, Chang H. Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock[J]. Chinese Physics B, 31, 034209(2022).

    [28] Schioppo M, Brown R C, McGrew W F et al. Ultrastable optical clock with two cold-atom ensembles[J]. Nature Photonics, 11, 48-52(2017).

    [29] Vallet G, Bookjans E, Eismann U et al. A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime[J]. New Journal of Physics, 19, 083002(2017).

    [30] Wineland D J, Monroe C, Itano W M et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions[J]. Journal of Research of the National Institute of Standards and Technology, 103, 259-328(1998).

    [31] Arnold K, Hajiyev E, Paez E et al. Prospects for atomic clocks based on large ion crystals[J]. Physical Review A, 92, 032108(2015).

    [32] Aharon N, Spethmann N, Leroux I D et al. Robust optical clock transitions in trapped ions using dynamical decoupling[J]. New Journal of Physics, 21, 083040(2019).

    [33] Courtillot I, Quessada A, Kovacich R P et al. Clock transition for a future optical frequency standard with trapped atoms[J]. Physical Review A, 68, 030501(2003).

    [34] Westergaard P G, Lodewyck J, Lorini L et al. Lattice-induced frequency shifts in Sr optical lattice clocks at the 10-17 level[J]. Physical Review Letters, 106, 210801(2011).

    [35] Rey A M, Gorshkov A V, Kraus C V et al. Probing many-body interactions in an optical lattice clock[J]. Annals of Physics, 340, 311-351(2014).

    [36] Bothwell T, Kedar D, Oelker E et al. JILA SrI optical lattice clock with uncertainty of 2.0×10-18[J]. Metrologia, 56, 065004(2019).

    [37] McGrew W F, Zhang X, Fasano R J et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 564, 87-90(2018).

    [38] Golovizin A, Fedorova E, Tregubov D et al. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift[J]. Nature Communications, 10, 1724(2019).

    [39] de Sarlo L, Favier M, Tyumenev R et al. A mercury optical lattice clock at LNE-SYRTE[J]. Journal of Physics: Conference Series, 723, 012017(2016).

    [40] Yamaguchi A, Safronova M S, Gibble K et al. Narrow-line cooling and determination of the magic wavelength of Cd[J]. Physical Review Letters, 123, 113201(2019).

    [41] Kulosa A P, Fim D, Zipfel K H et al. Towards a Mg lattice clock: observation of the 1S0-3P0 transition and determination of the magic wavelength[J]. Physical Review Letters, 115, 240801(2015).

    [42] Ushijima I, Takamoto M, Das M et al. Cryogenic optical lattice clocks[J]. Nature Photonics, 9, 185-189(2015).

    [43] Gao K L. The 40Ca+ ion optical clock[J]. National Science Review, 7, 1799-1801(2020).

    [44] Jian B, Dubé P, Madej A A. Evaluation of the blackbody radiation shift uncertainty for NRC’s strontium ion clock[C](2016).

    [45] Huntemann N, Okhapkin M, Lipphardt B et al. High-accuracy optical clock based on the octupole transition in 171Yb+[J]. Physical Review Letters, 108, 090801(2012).

    [46] Huntemann N, Sanner C, Lipphardt B et al. Single-ion atomic clock with 3×10-18 systematic uncertainty[J]. Physical Review Letters, 116, 063001(2016).

    [47] Chou C W, Hume D B, Koelemeij J C et al. Frequency comparison of two high-accuracy Al+ optical clocks[J]. Physical Review Letters, 104, 070802(2010).

    [48] Brewer S M, Chen J S, Hankin A M et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10-18[J]. Physical Review Letters, 123, 033201(2019).

    [49] Rosenband T, Hume D B, Schmidt P O et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place[J]. Science, 319, 1808-1812(2008).

    [50] Ohtsubo N, Li Y, Nemitz N et al. Frequency ratio of an 115In+ ion clock and a 87Sr optical lattice clock[J]. Optics Letters, 45, 5950-5953(2020).

    [51] Dehmelt H G. Proposed 10-14 δν/ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator[J]. Bulletin of the American Physical Society, 18, 1521(1973).

    [52] Diddams S A, Udem T, Bergquist J C et al. An optical clock based on a single trapped 199Hg+ ion[J]. Science, 293, 825-828(2001).

    [53] Oskay W H, Diddams S A, Donley E A et al. Single-atom optical clock with high accuracy[J]. Physical Review Letters, 97, 020801(2006).

    [54] Schmidt P O, Rosenband T, Langer C et al. Spectroscopy using quantum logic[J]. Science, 309, 749-752(2005).

    [55] Cui K F, Chao S J, Sun C L et al. Evaluation of the systematic shifts of a 40Ca+-27Al+ optical clock[J]. The European Physical Journal D, 76, 140(2022).

    [56] Huang Y, Zhang B L, Zeng M Y et al. Liquid-nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3 ×10-18[J]. Physical Review Applied, 17, 034041(2022).

    [57] Wei W Z, Hao P, Ma Z Y et al. Measurement and suppression of magnetic field noise of trapped ion qubit[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 55, 075001(2022).

    [58] Arnold K J, Kaewuam R, Roy A et al. Blackbody radiation shift assessment for a lutetium ion clock[J]. Nature Communications, 9, 1650(2018).

    [59] Holliman C A, Fan M, Contractor A et al. Radium ion optical clock[J]. Physical Review Letters, 128, 033202(2022).

    [60] King S A, Spieß L J, Micke P et al. An optical atomic clock based on a highly charged ion[J]. Nature, 611, 43-47(2022).

    [61] Dubé P, Jian B, Vutha A C. Advances in the uncertainty evaluation of a 88Sr single ion optical clock[C], 315-317(2018).

    [62] Dubé P, Madej A A, Shiner A et al. 88Sr+ single-ion optical clock with a stability approaching the quantum projection noise limit[J]. Physical Review A, 92, 042119(2015).

    [63] Barwood G P, Huang G, Klein H A et al. Agreement between two 88Sr+ optical clocks to 4 parts in 1017[J]. Physical Review A, 89, 050501(2014).

    [64] Katori H. Spectroscopy of strontium atoms in the lamb-dicke confinement[M]. Gill P. Frequency standards and metrology, 323-330(2002).

    [65] Katori H, Takamoto M. Ultrastable optical clock with neutral atoms in an engineered light shift trap[J]. Physical Review Letters, 91, 173005(2003).

    [66] Takamoto M, Hong F L, Higashi R et al. An optical lattice clock[J]. Nature, 435, 321-324(2005).

    [67] Ludlow A D, Boyd M M, Zelevinsky T et al. Systematic study of the 87Sr clock transition in an optical lattice[J]. Physical Review Letters, 96, 033003(2006).

    [68] Le Targat R, Baillard X, Fouché M et al. Accurate optical lattice clock with 87Sr atoms[J]. Physical Review Letters, 97, 130801(2006).

    [69] Takamoto M, Hong F L, Higashi R et al. Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope[J]. Journal of the Physical Society of Japan, 75, 104302(2006).

    [70] Origlia S, Pramod M S, Schiller S et al. Towards an optical clock for space: compact, high-performance optical lattice clock based on bosonic atoms[J]. Physical Review A, 98, 053443(2018).

    [71] Lemke N D, Ludlow A D, Barber Z W et al. Spin-1/2 optical lattice clock[J]. Physical Review Letters, 103, 063001(2009).

    [72] McFerran J J, Yi L, Mejri S et al. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 × 10-15[J]. Physical Review Letters, 108, 183004(2012).

    [73] Ludlow A D, Zelevinsky T, Campbell G K et al. Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science, 319, 1805-1808(2008).

    [74] Hinkley N, Sherman J A, Phillips N B et al. An atomic clock with 10-18 instability[J]. Science, 341, 1215-1218(2013).

    [75] Bloom B J, Nicholson T L, Williams J R et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 506, 71-75(2014).

    [76] Nicholson T L, Campbell S L, Hutson R B et al. Systematic evaluation of an atomic clock at 2×10-18 total uncertainty[J]. Nature Communications, 6, 6896(2015).

    [77] Brown R C, Phillips N B, Beloy K et al. Hyperpolarizability and operational magic wavelength in an optical lattice clock[J]. Physical Review Letters, 119, 253001(2017).

    [78] Ushijima I, Takamoto M, Katori H. Operational magic intensity for Sr optical lattice clocks[J]. Physical Review Letters, 121, 263202(2018).

    [79] Oelker E, Hutson R B, Kennedy C J et al. Demonstration of 4.8×10-17 stability at 1 s for two independent optical clocks[J]. Nature Photonics, 13, 714-719(2019).

    [80] Beloy K, Bodine M I, Bothwell T et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network[J]. Nature, 591, 564-569(2021).

    [81] Guo F, Tan W, Zhou C H et al. A proof-of-concept model of compact and high-performance 87Sr optical lattice clock for space[J]. AIP Advances, 11, 125116(2021).

    [82] Aeppli A, Chu A J, Bothwell T et al. Hamiltonian engineering of spin-orbit-coupled fermions in a Wannier-Stark optical lattice clock[J]. Science Advances, 8, eadc9242(2022).

    [83] Schwarz R, Dörscher S, Al-Masoudi A et al. Long term measurement of the 87Sr clock frequency at the limit of primary Cs clocks[J]. Physical Review Research, 2, 033242(2020).

    [84] Ohmae N, Bregolin F, Nemitz N et al. Direct measurement of the frequency ratio for Hg and Yb optical lattice clocks and closure of the Hg/Yb/Sr loop[J]. Optics Express, 28, 15112-15121(2020).

    [85] Tyumenev R, Favier M, Bilicki S et al. Comparing a mercury optical lattice clock with microwave and optical frequency standards[J]. New Journal of Physics, 18, 113002(2016).

    [86] Luo L M, Qiao H, Ai D et al. Absolute frequency measurement of an Yb optical clock at the 10-16 level using international atomic time[J]. Metrologia, 57, 065017(2020).

    [87] Zhang A, Xiong Z X, Chen X T et al. Ytterbium optical lattice clock with instability of order 10-18[J]. Metrologia, 59, 065009(2022).

    [88] Lu B K, Sun Z, Yang T et al. Improved evaluation of BBR and collisional frequency shifts of NIM-Sr2 with 7.2 ×10-18 total uncertainty[J]. Chinese Physics Letters, 39, 080601(2022).

    [89] Lu X T, Guo F, Wang Y B et al. Absolute frequency measurement of the 87Sr optical lattice clock at NTSC using International Atomic Time[EB/OL]. https://arxiv.org/abs/2211.04096

    [90] Takamoto M, Takano T, Katori H. Frequency comparison of optical lattice clocks beyond the Dick limit[J]. Nature Photonics, 5, 288-292(2011).

    [91] Nemitz N, Ohkubo T, Takamoto M et al. Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time[J]. Nature Photonics, 10, 258-261(2016).

    [92] Le Targat R, Lorini L, Le Coq Y et al. Experimental realization of an optical second with strontium lattice clocks[J]. Nature Communications, 4, 2109(2013).

    [93] Campbell G K, Ludlow A D, Blatt S et al. The absolute frequency of the 87Sr optical clock transition[J]. Metrologia, 45, 539-548(2008).

    [94] Lodewyck J, Bilicki S, Bookjans E et al. Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock[J]. Metrologia, 53, 1123-1130(2016).

    [95] Yamaguchi A, Shiga N, Nagano S et al. Stability transfer between two clock lasers operating at different wavelengths for absolute frequency measurement of clock transition in 87Sr[J]. Applied Physics Express, 5, 022701(2012).

    [96] Matsubara K, Hachisu H, Li Y et al. Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement[J]. Optics Express, 20, 22034-22041(2012).

    [97] Hachisu H, Petit G, Ido T. Absolute frequency measurement with uncertainty below 1×10-15 using international atomic time[J]. Applied Physics B, 123, 34(2017).

    [98] Hachisu H, Petit G, Nakagawa F et al. SI-traceable measurement of an optical frequency at the low 10-16 level without a local primary standard[J]. Optics Express, 25, 8511-8523(2017).

    [99] Akamatsu D, Inaba H, Hosaka K et al. Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb[J]. Applied Physics Express, 7, 012401(2014).

    [100] Tanabe T, Akamatsu D, Kobayashi T et al. Improved frequency measurement of the 1S0-3P0 clock transition in 87Sr using a Cs fountain clock as a transfer oscillator[J]. Journal of the Physical Society of Japan, 84, 115002(2015).

    [101] Falke S, Schnatz H, Winfred J S R V et al. The 87Sr optical frequency standard at PTB[J]. Metrologia, 48, 399-407(2011).

    [102] Grebing C, Al-Masoudi A, Dörscher S et al. Realization of a timescale with an accurate optical lattice clock[J]. Optica, 3, 563-569(2016).

    [103] Falke S, Lemke N, Grebing C et al. A strontium lattice clock with 3 × 10-17 inaccuracy and its frequency[J]. New Journal of Physics, 16, 073023(2014).

    [104] Lin Y G, Wang Q, Li Y et al. First evaluation and frequency measurement of the strontium optical lattice clock at NIM[J]. Chinese Physics Letters, 32, 090601(2015).

    [105] Lin Y G, Wang Q, Meng F et al. A 87Sr optical lattice clock with 2.9×10-17 uncertainty and its absolute frequency measurement[J]. Metrologia, 58, 035010(2021).

    [106] Hobson R, Bowden W, Vianello A et al. A strontium optical lattice clock with 1×10-17 uncertainty and measurement of its absolute frequency[J]. Metrologia, 57, 065026(2020).

    [107] Hong F L, Musha M, Takamoto M et al. Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer[J]. Optics Letters, 34, 692-694(2009).

    [108] Park C Y, Yu D H, Lee W K et al. Absolute frequency measurement of 1S0(F=1/2)-3P0(F= 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS[J]. Metrologia, 50, 119-128(2013).

    [109] Kim H, Heo M S, Lee W K et al. Improved absolute frequency measurement of the 171Yb optical lattice clock at KRISS relative to the SI second[J]. Japanese Journal of Applied Physics, 56, 050302(2017).

    [110] Fujieda M, Yang S H, Gotoh T et al. Advanced satellite-based frequency transfer at the 10-16 level[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65, 973-978(2018).

    [111] Kim H D, Heo M S, Park C Y et al. Absolute frequency measurement of the 171Yb optical lattice clock at KRISS using TAI for over a year[J]. Metrologia, 58, 055007(2021).

    [112] Pizzocaro M, Thoumany P, Rauf B et al. Absolute frequency measurement of the 1S0-3P0 transition of 171Yb[J]. Metrologia, 54, 102-112(2017).

    [113] Pizzocaro M, Bregolin F, Barbieri P et al. Absolute frequency measurement of the 1S0-3P0 transition of 171Yb with a link to international atomic time[J]. Metrologia, 57, 035007(2020).

    [114] Pizzocaro M, Sekido M, Takefuji K et al. Intercontinental comparison of optical atomic clocks through very long baseline interferometry[J]. Nature Physics, 17, 223-227(2021).

    [115] Takamoto M, Ushijima I, Das M et al. Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications[J]. Comptes Rendus Physique, 16, 489-498(2015).

    [116] Kohno T, Yasuda M, Hosaka K et al. One-dimensional optical lattice clock with a fermionic 171Yb isotope[J]. Applied Physics Express, 2, 072501(2009).

    [117] Yasuda M, Inaba H, Kohno T et al. Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second[J]. Applied Physics Express, 5, 102401(2012).

    [118] Akamatsu D, Yasuda M, Inaba H et al. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks[J]. Optics Express, 22, 7898-7905(2014).

    [119] Akamatsu D, Kobayashi T, Hisai Y et al. Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65, 1069-1075(2018).

    [120] Kobayashi T, Akamatsu D, Hosaka K et al. Demonstration of the nearly continuous operation of an 171Yb optical lattice clock for half a year[J]. Metrologia, 57, 065021(2020).

    [121] Hisai Y, Akamatsu D, Kobayashi T et al. Improved frequency ratio measurement with 87Sr and 171Yb optical lattice clocks at NMIJ[J]. Metrologia, 58, 015008(2021).

    [122] Stenger J, Tamm C, Haverkamp N et al. Absolute frequency measurement of the 435.5-nm 171Yb+-clock transition with a Kerr-lens mode-locked femtosecond laser[J]. Optics Letters, 26, 1589-1591(2001).

    [123] Tamm C, Lipphardt B, Schnatz H et al. 171Yb+ single-ion optical frequency standard at 688 THz[J]. IEEE Transactions on Instrumentation and Measurement, 56, 601-604(2007).

    [124] Sherstov I, Tamm C, Stein B et al. 171Yb+ single-ion optical frequency standards[C], 405-406(2007).

    [125] Tamm C, Weyers S, Lipphardt B et al. Stray-field-induced quadrupole shift and absolute frequency of the 688-THz 171Yb+ single-ion optical frequency standard[J]. Physical Review A, 80, 043403(2009).

    [126] Tamm C, Huntemann N, Lipphardt B et al. Cs-based optical frequency measurement using cross-linked optical and microwave oscillators[J]. Physical Review A, 89, 023820(2014).

    [127] Lange R, Huntemann N, Rahm J M et al. Improved limits for violations of local position invariance from atomic clock comparisons[J]. Physical Review Letters, 126, 011102(2021).

    [128] Webster S, Godun R, King S et al. Frequency measurement of the 2S1/2-2D3/2 electric quadrupole transition in a single 171Yb+ ion[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57, 592-599(2010).

    [129] Dörscher S, Huntemann N, Schwarz R et al. Optical frequency ratio of a 171Yb+ single-ion clock and a 87Sr lattice clock[J]. Metrologia, 58, 015005(2021).

    [130] Hosaka K, Webster S A, Blythe P J et al. An optical frequency standard based on the electric octupole transition in 171Yb+[J]. IEEE Transactions on Instrumentation and Measurement, 54, 759-762(2005).

    [131] Webster S A, Hosaka K, Gill P et al. Precision frequency measurement of the2S1/2-2F72 electric octupole transition in a single 171Yb+ ion[C], 96-97(2008).

    [132] King S A, Godun R M, Webster S A et al. Absolute frequency measurement of the 2S1/2-2F7/2 electric octupole transition in a single ion of 171Yb+ with 10-15 fractional uncertainty[J]. New Journal of Physics, 14, 013045(2012).

    [133] Baynham C F A, Godun R M, Jones J M et al. Absolute frequency measurement of the 2S1/2-2F7/2 optical clock transition in 171Yb+ with an uncertainty of 4×10-16 using a frequency link to international atomic time[J]. Journal of Modern Optics, 65, 585-591(2018).

    [134] Matsubara K, Li Y, Nagano S et al. Absolute frequency measurement of the 40Ca clock transition using a LD-based clock laser and UTC(NICT)[C], 751-755(2009).

    [135] Chwalla M, Benhelm J, Kim K et al. Absolute frequency measurement of the 40Ca+ 4s 2S1/2-3d 2D5/2 clock transition[J]. Physical Review Letters, 102, 023002(2009).

    [136] Huang Y, Cao J, Liu P et al. Hertz-level measurement of the 40Ca+ 4s 2S1/2-3d 2D5/2 clock transition frequency with respect to the SI second through the Global Positioning System[J]. Physical Review A, 85, 030503(2012).

    [137] Huang Y, Guan H, Liu P et al. Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10–17 level[J]. Physical Review Letters, 116, 013001(2016).

    [138] Huang Y, Zhang H Q, Gao K et al. Geopotential measurement with a robust, transportable Ca+ optical clock[J]. Physical Review A, 102, 050802(2020).

    [139] Zhang H Q. Development and application of vehicular 40Ca+ ion optical clock[D], 124-125(2022).

    [140] Baillard X, Fouché M, Le Targat R et al. Accuracy evaluation of an optical lattice clock with bosonic atoms[J]. Optics Letters, 32, 1812-1814(2007).

    [141] Akatsuka T, Takamoto M, Katori H. Optical lattice clocks with non-interacting bosons and fermions[J]. Nature Physics, 4, 954-959(2008).

    [142] Takano T, Mizushima R, Katori H. Precise determination of the isotope shift of 88Sr-87Sr optical lattice clock by sharing perturbations[J]. Applied Physics Express, 10, 072801(2017).

    [143] Morzyński P, Bober M, Bartoszek-Bober D et al. Absolute measurement of the 1S0-3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link[J]. Scientific Reports, 5, 17495(2015).

    [144] Radzewicz C, Bober M, Morzyński P et al. Accuracy budget of the 88Sr optical atomic clocks at KL FAMO[J]. Physica Scripta, 91, 084003(2016).

    [145] Madej A A, Bernard J E, Dubé P, Marmet L. Absolute frequency of the 88Sr+ 5s 2S1/2-4d 2D5/2 reference transition at 445 THz and evaluation of systematic shifts[J]. Physical Review A, 70, 012507(2004).

    [146] Dubé P, Madej A A, Bernard J E et al. Electric quadrupole shift cancellation in single-ion optical frequency standards[J]. Physical Review Letters, 95, 033001(2005).

    [147] Madej A A, Dubé P, Zhou Z C et al. 88Sr+ 445-THz single-ion reference at the 10-17 level via control and cancellation of systematic uncertainties and its measurement against the SI second[J]. Physical Review Letters, 109, 203002(2012).

    [148] Dubé P, Bernard J E, Gertsvolf M. Absolute frequency measurement of the 88Sr+ clock transition using a GPS link to the SI second[J]. Metrologia, 54, 290-298(2017).

    [149] Margolis H S, Barwood G P, Huang G et al. Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion[J]. Science, 306, 1355-1358(2004).

    [150] Rosenband T, Schmidt P, Hume D et al. Observation of the 1S0→3P0 clock transition in 27Al+[J]. Physical Review Letters, 98, 220801(2007).

    [151] Leopardi H, Beloy K, Bothwell T et al. Measurement of the 27Al+ and 87Sr absolute optical frequencies[J]. Metrologia, 58, 015017(2021).

    [152] Yamanaka K, Ohmae N, Ushijima I et al. Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit[J]. Physical Review Letters, 114, 230801(2015).

    [153] Stalnaker J E, Diddams S A, Fortier T M et al. Optical-to-microwave frequency comparison with fractional uncertainty of 10-15[J]. Applied Physics B, 89, 167-176(2007).

    [156] Schiller S, Görlitz A, Nevsky A et al. Optical clocks in space[J]. Nuclear Physics B-Proceedings Supplements, 166, 300-302(2007).

    [157] Koyama Y. The use of very long baseline interferometry for time and frequency metrology[J]. MAPAN, 27, 23-30(2012).

    [158] Bongs K, Singh Y, Smith L et al. Development of a strontium optical lattice clock for the SOC mission on the ISS[J]. Comptes Rendus Physique, 16, 553-564(2015).

    Guodong Zhao, Xiaotong Lu, Hong Chang. Research Progress of the Optical Frequency Standard[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106003
    Download Citation