• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 22, Issue 8, 908 (2024)
XIONG Zhuang, ZHANG Fengtian, XIE Jin, ZHANG Zhaoyun..., YANG Jie and ZHAO Baolin*|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11805/tkyda2023002 Cite this Article
    XIONG Zhuang, ZHANG Fengtian, XIE Jin, ZHANG Zhaoyun, YANG Jie, ZHAO Baolin. Research progress of low-g MEMS inertial switch[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(8): 908 Copy Citation Text show less
    References

    [1] FROBENIUS W D,ZEITMAN S A,WHITE M H,et al. Microminiature ganged threshold accelerometers compatible with integrated circuit technology[J]. IEEE Transactions on Electron Devices, 1972,19(1):37-40. doi:10.1109/T-ED.1972.17368.

    [2] Sandia National Laboratories. Sandia lab news[R]. Albuquerque:Sandia National Laboratories, 2005.

    [3] Sandia National Laboratories. Labs accomplishments[R]. Albuquerque:Sandia National Laboratories, 2005.

    [4] Sandia National Laboratories. Labs accomplishments[R]. Albuquerque:Sandia National Laboratories, 2004.

    [5] HT Micro Analytical Inc. Mems precision[EB/OL]. [2023-01-02]. http://www.htmicro.com.

    [6] YOON S W. Vibration isolation and shock protection for MEMS[D]. Ann Arbor,Michigan:University of Michigan, 2009.

    [7] RAGHUNATHAN N. MEMS switches for impact threshold detection[D]. Peroulis:Purdue University, 2014.

    [10] FIELD R V,EPP D S. Development and calibration of a stochastic dynamics model for the design of a MEMS inertial switch[J].Sensors and Actuators A:Physical, 2007,134(1):109-118. doi:10.1016/j.sna.2006.04.033.

    [11] PALMER J A,EPP D S,GARCIA E J,et al. Engineering fluidic damping in a MEMS inertial switch:conference proceedings of the society for experimental mechanics series:SAND2006-0500C[C]// International Modal Analysis Conference. St.Louis,Missouri:Sandia National Laboratories, 2006.

    [12] BAKER M S,POHL K R. Testing of MEMS mechanical non-volatile memory and silicon re-entry switch:SAND2005-6094[R].Livermore,CA,United States:Sandia National Laboratories, 2005. doi:10.2172/875630.

    [13] HWANG J, RYU D, PARK C, et al. Design and fabrication of a silicon-based MEMS acceleration switch working lower than10g[J]. Journal of Micromechanics and Microengineering, 2017,27(6):65009. doi:10.1088/1361-6439/aa6cd2.

    [14] LIU Min, ZHU Yingmin, WANG Chao, et al. A novel low-g MEMS bistable inertial switch with self-locking and reverseunlocking functions[J]. Journal of Microelectromechanical Systems, 2020,29(6):1493-1503. doi:10.1109/JMEMS.2020.3032586.

    [15] XIONG Zhuang,WANG Chao,ZHANG Fengtian,et al. A low-g MEMS inertial switch based on direct contact sensing method[J].IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(8): 1535-1541. doi:10.1109/TCPMT. 2019.2926332.

    [16] ZHANG Fengtian, WANG Chao, YUAN Mingquan, et al. Conception, fabrication and characterization of a silicon based MEMS inertial switch with a threshold value of 5g[J]. Journal of Micromechanics and Microengineering, 2017, 27(12): 125001. doi:10.1088/1361-6439/aa7c0d.

    [17] ZHANG Fengtian, YUAN Mingquan, JIN Weifeng, et al. Fabrication of a silicon based vertical sensitive low-g inertial microswitch for linear acceleration sensing[J]. Microsystem Technologies, 2017,23(7):2467-2473. doi:10.1007/s00542-016-3008-y.

    [18] XIONG Zhuang, ZHANG Fengtian, PU Yingdong, et al. Silicon-based, low-g microelectromechanical systems inertial switch for linear acceleration sensing application[J]. Micro & Nano Letters, 2015,10(7):347-350. doi:10.1049/mnl.2015.0059.

    [20] CURRANO L J, BAUMAN S, CHURAMAN W, et al. Latching ultra-low power MEMS shock sensors for acceleration monitoring[J].Sensors and Actuators A:Physical, 2008,147(2):490-497. doi:10.1016/j.sna.2008.06.009.

    [21] ONGKODJOJO A, TAY F E H. Optimized design of a micromachined G-switch based on contactless configuration for health care applications[J]. Journal of Physics:Conference Series, 2006(34):1044-1052. doi:10.1088/1742-6596/34/1/173.

    [22] KIM H, JANG Y, KIM Y, et al. MEMS acceleration switch with bi-directionally tunable threshold[J]. Sensors and Actuators A: Physical, 2014(208):120-129. doi:10.1016/j.sna.2014.01.003.

    [23] KIM H S, JANG Y H, KIM Y K, et al. MEMS acceleration switch capable of increasing threshold acceleration[J]. Electronics Letters, 2012,48(25):1614-1616. doi:10.1049/el.2012.3794.

    [24] CHEN Wenguo,YANG Zhuoqing,WANG Yan,et al. Fabrication and characterization of a low-g inertial microswitch with flexible contact point and limit-block constraints[J]. IEEE-ASME Transactions on Mechatronics, 2016, 21(2): 963-972. doi: 10.1109/TMECH.2015.2463726.

    [25] LI Jian,WANG Yan,LI Yue,et al. A contact-enhanced MEMS inertial switch with electrostatic force assistance and multi-step pulling action for prolonging contact time[J]. Microsystem Technologies, 2018, 24(7): 3179-3191. doi: 10.1007/s00542-018-3881-7.

    [26] DU Liqun, LI Yu, ZHAO Jian, et al. A low-g MEMS inertial switch with a novel radial electrode for uniform omnidirectional sensitivity[J]. Sensors and Actuators A:Physical, 2018(270):214-222. doi:10.1016/j.sna.2017.12.068.

    [27] CHUNG C H, MA R P, SHIEH Y C, et al. A robust micro mechanical-latch shock switch with low contact resistance[C]// 2011 the 16th International Solid-State Sensors,Actuators and Microsystems Conference. Beijing,China:IEEE, 2011:1046-1051. doi:10.1109/TRANSDUCERS.2011.5969169.

    [28] YOO K, PARK U, KIM J. Development and characterization of a novel configurable MEMS inertial switch using a microscale liquid-metal droplet in a microstructured channel[J]. Sensors and Actuators A: Physical, 2011, 166(2): 234-240. doi: 10.1016/J.SNA.2009.12.008.

    [29] GALAMOBS P C. Liquid metal environment sensing devices(ESDs) [R]. U. S. Albuquerque, New Mexico: Sandia National Laboratories 2011 LDRD Annual Report, 2011:599-600.

    [30] GALAMOBS P C. Compatibility issues associated with the feasibility of liquid metal use in harsh environment[R]. U. S. Albuquerque,New Mexico:Sandia National Laboratories 2010 LDRD Annual Report, 2010:557-558.

    [31] KUO J C, KUO P H, LAI Y T, et al. A passive inertial switch using MWCNT-hydrogel composite with wireless interrogation capability[J]. Journal of Microelectromechanical Systems, 2013,22(3):646-654. doi:10.1109/JMEMS.2012.2237385.

    [32] GUO Junhui, YANG Yujie. A passive hydrogel-based inertial switch integrated with micromachined L-C resonator[C]// 2012 IEEE the 25th International Conference on Micro Electro Mechanical Systems(MEMS). Paris,France:IEEE, 2012:515-518. doi:10.1109/MEMSYS.2012.6170176.

    XIONG Zhuang, ZHANG Fengtian, XIE Jin, ZHANG Zhaoyun, YANG Jie, ZHAO Baolin. Research progress of low-g MEMS inertial switch[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(8): 908
    Download Citation