• Laser & Optoelectronics Progress
  • Vol. 61, Issue 5, 0516001 (2024)
Yunyun Yang, Jingyi Wu, Yinyi Ma, Jue Gong, and Faming Li*
Author Affiliations
  • School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan , China
  • show less
    DOI: 10.3788/LOP230911 Cite this Article Set citation alerts
    Yunyun Yang, Jingyi Wu, Yinyi Ma, Jue Gong, Faming Li. Low-Dimensional Perovskite Templated Growth of MAPbI3 Perovskite Crystals and Photovoltaic Performance of Solar Cells[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0516001 Copy Citation Text show less
    References

    [1] Jena A K, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: background, status, and future prospects[J]. Chemical Reviews, 119, 3036-3103(2019).

    [2] He J T, Lü Q N, Zhang M D et al. Narrow-band perovskite photodetector based on SPR and interference mode composite enhancement[J]. Chinese Journal of Lasers, 49, 2304004(2022).

    [3] Zhou B L, Li G H, Wu J H et al. Perovskite photonic crystal laser with low threshold[J]. Laser & Optoelectronics Progress, 59, 0500005(2022).

    [4] Cao Y, Wang N N, Yi C et al. Perovskite light-emitting diodes: next-generation lighting and display technology[J]. Acta Optica Sinica, 42, 1733001(2022).

    [6] Huang Q R, Li F M, Wang M et al. Vapor-deposited CsPbI3 solar cells demonstrate an efficiency of 16%[J]. Science Bulletin, 66, 757-760(2021).

    [7] Wang M, Zeng P, Bai S et al. High-quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells[J]. Solar RRL, 2, 1800217(2018).

    [8] Mao L, Yang T, Zhang H et al. Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency[J]. Advanced Materials, 34, 2206193(2022).

    [9] Liu M Z, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 501, 395-398(2013).

    [10] Li H, Zhou J J, Tan L G et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency[J]. Science Advances, 8, eabo7422(2022).

    [11] Park J, Kim J, Yun H S et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides[J]. Nature, 616, 724-730(2023).

    [12] Kim J Y, Lee J W, Jung H S et al. High-efficiency perovskite solar cells[J]. Chemical Reviews, 120, 7867-7918(2020).

    [13] Abzieher T, Feeney T, Schackmar F et al. From groundwork to efficient solar cells: on the importance of the substrate material in co-evaporated perovskite solar cells[J]. Advanced Functional Materials, 31, 2104482(2021).

    [14] Lin D X, Zhan Z Y, Huang X L et al. Advances in components engineering in vapor deposited perovskite thin film for photovoltaic application[J]. Materials Today Advances, 16, 100277(2022).

    [15] Chen Y N, Sun Y, Peng J J et al. Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells[J]. Advanced Energy Materials, 7, 1700162(2017).

    [16] Fu W, Chen H, Jen A K Y. Two-dimensional perovskites for photovoltaics[J]. Materials Today Nano, 14, 100117(2021).

    [17] Ye T, Bruno A, Han G F et al. Efficient and ambient-air-stable solar cell with highly oriented 2D@3D perovskites[J]. Advanced Functional Materials, 28, 1801654(2018).

    [18] Liu B, Long M Q, Cai M Q et al. Interfacial charge behavior modulation in 2D/3D perovskite heterostructure for potential high-performance solar cells[J]. Nano Energy, 59, 715-720(2019).

    [19] Jiang X Q, Zhang J F, Ahmad S et al. Dion-Jacobson 2D-3D perovskite solar cells with improved efficiency and stability[J]. Nano Energy, 75, 104892(2020).

    [20] Chen C W, Kang H W, Hsiao S Y et al. Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition[J]. Advanced Materials, 26, 6647-6652(2014).

    [21] Kim B S, Han Y, Kim J J. Growth mechanism of CH3NH3I in a vacuum processed perovskite[J]. Nanoscale Advances, 2, 3906-3911(2020).

    [22] Olthof S, Meerholz K. Substrate-dependent electronic structure and film formation of MAPbI3 perovskites[J]. Scientific Reports, 7, 40267(2017).

    [23] Luo C, Zheng G, Gao F et al. Facet orientation tailoring via 2D-seed- induced growth enables highly efficient and stable perovskite solar cells[J]. Joule, 6, 240-257(2022).

    [24] Zhao W J, Wu M Z, Liu Z K et al. Orientation engineering via 2D seeding for stable 24.83% efficiency perovskite solar cells[J]. Advanced Energy Materials, 13, 2204260(2023).

    [25] Zeng L X, Chen S, Forberich K et al. Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings[J]. Energy & Environmental Science, 13, 4666-4690(2020).

    [26] Wang Q, Shao Y C, Xie H P et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3[J]. Applied Physics Letters, 105, 163508(2014).

    [27] Shao Z Y, You S W, Guo X et al. Temperature-dependent photoluminescence of co-evaporated MAPbI3 ultrathin films[J]. Results in Physics, 34, 105326(2022).

    [28] Dänekamp B, Müller C, Sendner M et al. Perovskite-perovskite homojunctions via compositional doping[J]. The Journal of Physical Chemistry Letters, 9, 2770-2775(2018).

    Yunyun Yang, Jingyi Wu, Yinyi Ma, Jue Gong, Faming Li. Low-Dimensional Perovskite Templated Growth of MAPbI3 Perovskite Crystals and Photovoltaic Performance of Solar Cells[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0516001
    Download Citation