[1] Scholle K, Lamrini S, Koopmann P et al. 2 μm laser sources and their possible applications[M]. Pal B. Frontiers in guided wave optics and optoelectronics, 471-500(2010).
[2] Henderson S W, Suni P J M, Hale C P et al. Coherent laser radar at 2 μm using solid-state lasers[J]. IEEE Transactions on Geoscience and Remote Sensing, 31, 4-15(1993).
[3] McAleavey F J, MacCraith B D. Efficient diode pumped Tm3+-doped fluoride fibre laser for hydrocarbon gas sensing[J]. Electronics Letters, 31, 800-802(1995).
[4] Jelínková H, Koranda P, Šulc J et al. Diode pumped Tm∶YAP laser for eye microsurgery[J]. Proceedings of SPIE, 6871, 68712N(2008).
[5] Li S. Experimental studies on Tm∶YAP slab laser with high power[D](2013).
[6] Du Y Q. Characteristics of continuous wave and passively Q-switched pulsed thulium and holmium codoped vanadate laser[D](2014).
[7] Yao B Q, Meng P B, Li G et al. Comparison of Tm∶YLF and Tm: YAP in thermal analysis and laser performance[J]. Journal of the Optical Society of America B, 28, 1866-1873(2011).
[8] Sheintop U, Perez E, Sebbag D et al. Actively Q-switched tunable narrow bandwidth milli-Joule level Tm∶YLF laser[J]. Optics Express, 26, 22135-22143(2018).
[9] Lai K S, Phua P B, Wu R F et al. 120-W continuous-wave diode-pumped Tm∶YAG laser[J]. Optics Letters, 25, 1591-1593(2000).
[10] Liu P, Jin L, Liu X et al. High efficiency Tm∶YAG slab laser with hundred-Watts-level output power[J]. Applied Optics, 55, 2498-2502(2016).
[11] Cai S S, Kong J, Wu B et al. Room-temperature cw and pulsed operation of a diode-end-pumped Tm∶YAP laser[J]. Applied Physics B, 90, 133-136(2008).
[12] Mao Y F, Gao Y, Wang L. 254 W laser-diode dual-end-pumped Tm∶YAP InnoSlab laser[J]. Applied Optics, 59, 8224-8227(2020).
[13] Buryy O A, Sugak D Y, Ubizskii S B et al. The comparative analysis and optimization of the free-running Tm3+∶YAP and Tm3+∶YAG microlasers[J]. Applied Physics B, 88, 433-442(2007).
[14] Bai F, Chen X Y, Liu J L et al. A narrow linewidth continuous wave Ho∶YAG laser pumped by a Tm∶YLF laser[J]. Chinese Physics Letters, 32, 64-66(2015).
[15] Li Y Y, Xu Y, Leng Y X et al. Diode-pumped high-efficiency broadband tunable Tm∶YAP laser[J]. Chinese Optics Letters, 9, 081402(2011).
[16] Stoneman R C, Esterowitz L. Efficient 1.94-μm Tm∶YALO laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1, 78-81(1995).
[17] Payne S A, Chase L L, Smith L K et al. Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+[J]. IEEE Journal of Quantum Electronics, 28, 2619-2630(1992).
[18] Yao B Q, Li X L, Shi H W et al. Diode-pumped electro-optical cavity-dumped Tm∶YAP laser at 1996.9 nm[J]. Chinese Optics Letters, 13, 101402(2015).
[19] Wen Y, Zhang H L, Zhang L et al. 1.99 micron Tm∶YAP acousto-optical Q-switch laser[J]. IOP Conference Series: Materials Science and Engineering, 563, 032007(2019).
[20] Wen Y, Li T Y, He Q F et al. Laser-diode dual-end-pumped electro-optic Q-switched slab Tm∶YAP laser[J]. Infrared Physics & Technology, 105, 103215(2020).
[21] Guo L, Yang Y L, Zhao S Z et al. Room temperature watt-level 3.87 µm MgO∶PPLN optical parametric oscillator under pumping with a Tm∶YAP laser[J]. Optics Express, 28, 32916-32924(2020).
[22] Sheintop U, Perez E, Nahear R et al. Widely tunable, narrow bandwidth, mJ level Tm∶YAP laser with YAG Etalons[J]. Optics & Laser Technology, 136, 106710(2021).
[23] Yang Y L, Zhao S Z, Li T et al. High-peak-power Q-switched 1988 nm bulk laser based on an electro-optical La3Ga5SiO14 modulator[J]. Applied Optics, 59, 2616-2620(2020).