Xiaonan Gao, Guangyuan Zhang, Fengyü Zhou, Dexin Yu. Location Decision of Needle Entry Point Based on Improved Pruning Algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(24): 2415001

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 59, Issue 24, 2415001 (2022)

Fig. 1. Vein detection algorithm flow of semi-automatic blood collection

Fig. 2. Algorithm flow of automatic detection and annotation of dorsal hand vein injection image

Fig. 3. Structure of AT-U-NET model

Fig. 4. Non-Local structure

Fig. 5. Structure of U-Netup module

Fig. 6. Strengthened feature extraction network

Fig. 7. Original map and segmentation map of dorsal hand vein. (a) Original map; (b) segmentation map

Fig. 8. PT-Pruning flowchart

Fig. 9. Cannibalization stage

Fig. 10. Vein segmentation figure and main line of vascular skeleton. (a) Segmentation; (b) main line

Fig. 11. Decision experiment of needle entry point position

Fig. 12. Dorsal hand vein imaging acquisition equipment

Fig. 13. Original dorsal hand vein images

Fig. 14. Original pictures and label images

Fig. 15. Original pictures and label images

Fig. 16. Detection and segmentation effect of at-u-net dorsal hand vein

Fig. 17. Original back of hand

Fig. 18. Image after homomorphic filtering

Fig. 19. Image after CLAHE processing

Fig. 20. Image after adaptive threshold segmentation

Fig. 21. Image after morphological processing

Fig. 22. Image after closed operation

Fig. 23. Different semantic segmentation model processing effects

Fig. 24. Effect of PT-Pruning needle entry point position decision

Fig. 25. Optimal needle entry point position decision
|
Table 1. Performance indexes of different semantic segmentation models for segmentation of dorsal hand vein
|
Table 2. Accuracy of needle entry point recognition in effective area
|
Table 3. Recognition accuracy of optimal needle entry point

Set citation alerts for the article
Please enter your email address