
- Chinese Optics Letters
- Vol. 19, Issue 11, 111903 (2021)
Abstract
1. Introduction
Cylindrical vector beams (CVBs) are optical beams that carry polarization singularities. Due to the unique polarization and amplitude characteristics of the optical fields of CVBs, many applications have been explored in the field of optical communication[
Ultrafast CVBs are generally obtained by mode excitation and selection of solitons from the mode-locked laser platform, where the soliton presented in the vector or scalar state[
In recent years, researches on ultrafast CVBs have focused on how to excite and select high-order modes to improve the conversion efficiency of
However, CVBs, as vector modes, are sensitive to the vector properties of solitons, but the influence of soliton vector dynamics on the realization of ultrafast CVBs has attracted little attention in previous research. In this Letter, we explore the role of soliton vector properties in realizing ultrafast CVBs and pay attention to the conversion efficiency of solitons to CVBs, rather than that of
2. Experiment Section
The configuration of the proposed all-fiber passively mode-locked GVLVSs laser setup is illustrated in Fig. 1(a). A 976 nm laser diode (LD) pumps a 35 cm long erbium-doped fiber (EDF) (Er80-8/125, Liekki) by a wavelength division multiplexer (WDM). A graded-index multimode fiber (GIMF) is inserted into the ring cavity and combined with the single fiber to form a single-mode fiber–graded-index multimode fiber–single-mode fiber (SMS) ultrafast switch. The set-up includes a polarization-independent isolator to ensure unidirectional propagation in the cavity, and a polarization controller (PC) to continuously adjust the in-cavity birefringence. A 90:10 coupler is utilized to extract the laser pulses through the 10% port. The output soliton train can be polarization-resolved along two birefringence axes with a polarization beam splitter (PBS) and PC2 external to the cavity.
Figure 1.(a) Experimental configuration of all-fiber GVLVSs fiber laser; (b) oscilloscope traces of these GVLVSs along the two orthogonal polarization axes; (c) polarization-resolved spectrum of GVLVSs; (d) pulse duration of GVLVSs.
Self-started mode-locking can be easily obtained as the lasing threshold is reached with the fundamental repetition rate of 25 MHz. Figure 1(b) depicts the oscilloscope trace after the polarization-resolved measurement. The pulse intensity of the two orthogonally polarized solitons (red and blue pulse trains) is uniform. Moreover, the central wavelengths of the vertical and horizontal components after being polarization-resolved are located on both sides of the total spectrum, which is a typical feature of the GVLVSs spectrum[
By increasing the pump power above 35 mW, noisy pulsations are observed, corresponding to unstable multipulse mode-locking states. Upon increasing the pump power to 69 mW, stable harmonic mode-locking (HML) can be obtained, and the repetition rate reaches 75 MHz, corresponding to the third harmonic order. Figure 2 shows the oscilloscope traces of the typical mode-locked and HML operation evaluation at different pump powers. With proper adjustment of PC1, multiple pulses from the third up to the eighth HML are generated within the laser round trip at the pump power from 35 mW to 130 mW, corresponding to 75 MHz, 175 MHz, and 198 MHz, as shown in Figs. 2(b)–2(d). The RF spectrum of GVLVSs from fundamental to HML regimes is shown in Fig. 2(e)–2(h). The RF spectrum at the fundamental repetition rate is 25 MHz at 35 mW, and the signal-to-noise ratio (SNR) exceeds 44 dB. With the maximum pump power, the SNR for the eighth harmonic solitons is 49.1 dB. In the whole process, there is no satellite peak emerging in the RF spectrum, which indicates that there is no vector resonance modulation instability (VRMI) in the harmonic mode-locked state.
Figure 2.(a)–(d) Oscilloscope trace and (e)–(h) RF spectrum of the output pulses at different pump power.
In order to obtain the ultrafast CVBs, an LPFG, inscribed on a graded-index two-mode fiber (FM GI-2, YOFC) by a
Figure 3.(a) Transmission spectrum of LP01 mode of the TM-LPFG; (b) the surface morphology of TM-LPFG (inset: enlarged part).
Figure 4.Intensity profiles of ultrafast CVBs based on vector-locked and non-vector-locked solitons. (a) and (f) are radially and azimuthally polarization beams without a polarizer; (b)–(e) and (g)–(j) show the profiles of the output beam after passing through a linear polarizer. Arrow indicates the orientation of the linear polarizer.
Figure 5.Output power of ultrafast CVBs depends on the incident power of vector and non-vector-locked solitons.
Since the CVBs are vector modes, the polarization dynamics of solitons should be investigated to explain the role of solitons vector properties in the process of ultrafast CVBs formation. We used a polarimeter (PAX1000IR2/M, Thorlabs) to record the state of polarization (SOP) based on SMS, CNT, and NPR mode-locking operation. The polarization evolution for fundamental and HML regimes based on SMS mode-locking is shown in Figs. 6(a) and 6(b). The GVLVSs can be observed on the surface of a Poincaré sphere at the fundamental frequency and HML regime, as shown in Fig. 6(a). GVLVSs based on SMS mode-locking are associated with a fixed points polarization attractor on a Poincaré sphere. The observed phase difference of GVLVSs indicates that GVLVSs are polarization-fixed left-handed and right-handed vector-locked solitons. The degree of polarization (DOP) corresponding to the fundamental repetition rate and harmonic regime is higher than 75% and achieves the maximum value of
Figure 6.Time evolution of solitons based on SMS, CNT, and NPR mode-locking in terms of (a), (c), (e) Stokes parameters at the Poincaré sphere and (b), (d), (f) intensities of orthogonally polarized modes.
To explain the relationship between soliton vector properties and CVBs, we need to establish the vector distribution of CVBs. Figure 7 illustrates the polarization and intensity profiles of CVBs. The expression of CVBs in cylindrical coordinates is as follows:
Figure 7.Polarization and intensity profiles of ultrafast CVBs: (a) radial polarization TM01, (b) angular polarization TE01.
3. Conclusion
In conclusion, we investigate the effect of vector dynamics on ultrafast CVBs implementation and innovatively propose a novel technical method to realize femtosecond CVBs based on vector-locked solitons (GVLVSs). The vector-locked solitons are obtained by an all-fiber passively mode-locked laser. Compared with vector-periodically-changed solitons and scalar solitons, the excellent vector-locked characteristics of GVLVSs not only increase the conversion efficiency of solitons to CVBs and the output power of CVBs by 4.1 times and 2.4 times, respectively, but also expand the ultrafast CVBs from the fundamental frequency to harmonic regime for the first time, to the best of our knowledge. The femtosecond CVBs at 1564.72 nm can be tuned from 25 MHz to 198 MHz, corresponding to the fundamental repetition rate to the eighth harmonic order, with the calculated purity of 97.2%. This is the highest repetition rate reported for ultrafast CVBs based on passive mode-locking. This ultrafast CVB based on vector-locked solitons not only opens up their applications in high-repetition rate fields, but also provides a new idea for generation of high-order ultrafast optical vortices.
References
[1] L. Wang, R. M. Nejad, A. Corsi, J. Lin, Y. Messaddeq, L. Rusch, S. LaRochelle. Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing. Opt. Express, 25, 11736(2017).
[2] A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, L. Novotny. Surface plasmon interference excited by tightly focused laser beams. Opt. Lett., 32, 2535(2007).
[3] M. C. Zhong, L. Gong, D. Li, J. H. Zhou, Z. Q. Wang, Y. M. Li. Optical trapping of core-shell magnetic microparticles by cylindrical vector beams. Appl. Phys. Lett., 105, 181112(2014).
[4] N. A. Chaitanya, S. C. Kumar, G. K. Samanta, M. Ebrahim-Zadeh. Ultrafast optical vortex beam generation in the ultraviolet. Opt. Lett., 41, 2715(2016).
[5] T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. I. Ishiuchi, M. Sakai, M. Fujii. Two-color far-field super-resolution microscope using a doughnut beam. Chem. Phys. Lett., 371, 634(2003).
[6] K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett., 12, 3645(2012).
[7] Y. Song, Z. Wang, C. Wang, K. Panajotov, H. Zhang. Recent progress on optical rogue waves in fiberlasers: status, challenges, and perspectives. Adv. Photon., 2, 024001(2021).
[8] Y. Song, X. Shi, C. Wu, D. Tang, H. Zhang. Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev., 6, 021313(2019).
[9] Y. F. Song, L. Li, H. Zhang, D. Y. Shen, D. Y. Tang, K. P. Loh. Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. Opt. Express, 21, 10010(2013).
[10] D. Mao, X. Liu, H. Lu. Observation of pulse trapping in a near-zero dispersion regime. Opt. Lett., 37, 2619(2012).
[11] X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, Y. Ohishi. Group velocity locked vector soliton and polarization rotation vector soliton generation in a highly birefringent fiber laser. Jpn. J. Appl. Phys., 58, 020910(2019).
[12] Y. Luo, J. Cheng, B. Liu, Q. Sun, L. Li, S. Fu, D. Tang, L. Zhao, D. Liu. Group-velocity-locked vector soliton molecules in fiber lasers. Sci. Rep., 7, 2369(2017).
[13] R. Tao, H. Li, Y. Zhang, P. Yao, L. Xu, C. Gu, Q. Zhan. All-fiber mode-locked laser emitting broadband-spectrum cylindrical vector mode. Opt. Laser Technol., 123, 105945(2020).
[14] Y. Guo, Y. G. Liu, Z. Wang, Z. Wang, H. Zhang. All-fiber mode-locked cylindrical vector beam laser using broadband long period grating. Laser Phys. Lett., 15, 085108(2018).
[15] D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, J. Zhao. Ultrafast all-fiber based cylindrical-vector beam laser. Appl. Phys. Lett., 110, 021107(2017).
[16] Y. Zhou, J. Lin, X. Zhang, L. Xu, C. Gu, B. Sun, A. Wang, Q. Zhan. Self-starting passively mode-locked all fiber laser based on carbon nanotubes with radially polarized emission. Photon. Res., 4, 327(2016).
[17] H. Wan, J. Wang, Z. Zhang, J. Wang, S. Ruan, L. Zhang. Passively mode-locked ytterbium-doped fiber laser with cylindrical vector beam generation based on mode selective coupler. J. Light. Technol., 36, 3403(2018).
[18] W. Zhang, K. Wei, L. Huang, D. Mao, B. Jiang, F. Gao, G. Zhang, T. Mei, J. Zhao. Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating. Opt. Express, 24, 19278(2016).
[19] J. Lin, K. Yan, Y. Zhou, L. X. Xu, C. Gu, Q. W. Zhan. Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation. Appl. Phys. Lett., 107, 191108(2015).
[20] C. Wang, B. Yang, M. Cheng, S. Cheng, J. Liu, J. Xiao, H. Ye, Y. Li, D. Fan, S. Chen. Cylindrical vector beam multiplexing for radio-over-fiber communication with dielectric metasurfaces. Opt. Express, 28, 38666(2020).
[21] X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, S. Wen. Generation of cylindrical vector vortex beams by two cascaded metasurfaces. Opt. Express, 22, 17207(2014).
[22] Z. Shen, R. Li, S. Huang, B. Zhang, Q. Chen. Generation of needle beams through focusing of azimuthally polarized vortex beams by polarization-insensitive metasurfaces. J. Opt. Soc. Am. B, 38, 1869(2021).
[23] Y. Xu, H. Zhang, Q. Li, X. Zhang, Q. Xu, W. Zhang, C. Hu, X. Zhang, J. Han, W. Zhang. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics., 9, 3393(2020).
[24] L. Yun. Generation of vector dissipative and conventional solitons in large normal dispersion regime. Opt. Express, 25, 18751(2017).
[25] B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, Q. Zhan. Low-threshold single wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating. Opt. Lett., 37, 464(2012).

Set citation alerts for the article
Please enter your email address