• Photonics Research
  • Vol. 10, Issue 8, 1892 (2022)
Shijie Zhu, Pengjiang Qiu, Xinyi Shan, Runze Lin..., Zhou Wang, Zuxin Jin, Xugao Cui, Guoqi Zhang and Pengfei Tian*|Show fewer author(s)
Author Affiliations
  • Institute for Electric Light Sources, School of Information Science and Technology, Academy of Engineering and Technology, Yiwu Research Institute, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.1364/PRJ.459531 Cite this Article Set citation alerts
    Shijie Zhu, Pengjiang Qiu, Xinyi Shan, Runze Lin, Zhou Wang, Zuxin Jin, Xugao Cui, Guoqi Zhang, Pengfei Tian, "High-speed long-distance visible light communication based on multicolor series connection micro-LEDs and wavelength division multiplexing," Photonics Res. 10, 1892 (2022) Copy Citation Text show less
    (a) Schematic of GaN-based series connection micro-LED array. (b) Plan-view SEM image of the 20-μm blue GaN-based series connection micro-LED array. (c) Plan-view optical micrograph images of the series connection micro-LED arrays.
    Fig. 1. (a) Schematic of GaN-based series connection micro-LED array. (b) Plan-view SEM image of the 20-μm blue GaN-based series connection micro-LED array. (c) Plan-view optical micrograph images of the series connection micro-LED arrays.
    Current versus voltage curves for (a) 20-μm violet, (b) 20-μm blue, (c) 20-μm green, and (d) 40-μm yellow micro-LED arrays with 1, 4, 6, and 9 pixels in series, respectively.
    Fig. 2. Current versus voltage curves for (a) 20-μm violet, (b) 20-μm blue, (c) 20-μm green, and (d) 40-μm yellow micro-LED arrays with 1, 4, 6, and 9 pixels in series, respectively.
    Light output power versus current density curves for (a) 20-μm violet, (b) 20-μm blue, (c) 20-μm green, and (d) 40-μm yellow micro-LED arrays with 1, 4, 6, and 9 pixels in series, respectively.
    Fig. 3. Light output power versus current density curves for (a) 20-μm violet, (b) 20-μm blue, (c) 20-μm green, and (d) 40-μm yellow micro-LED arrays with 1, 4, 6, and 9 pixels in series, respectively.
    Emission spectra of the (a) 20-μm 3×3 violet micro-LED array, (b) 20-μm 3×3 blue micro-LED array, (c) 20-μm 3×3 green micro-LED array, and (d) 40-μm 2×2 yellow micro-LED array versus current density. Insets are the microscope images of the yellow micro-LED array at different current densities. (e) The spectra of the four micro-LED arrays used for high-speed long-distance WDM communication.
    Fig. 4. Emission spectra of the (a) 20-μm 3×3 violet micro-LED array, (b) 20-μm 3×3 blue micro-LED array, (c) 20-μm 3×3 green micro-LED array, and (d) 40-μm 2×2 yellow micro-LED array versus current density. Insets are the microscope images of the yellow micro-LED array at different current densities. (e) The spectra of the four micro-LED arrays used for high-speed long-distance WDM communication.
    (a) The modulation bandwidths versus pixel numbers of the GBYV micro-LEDs under the same injection current density. (b) The frequency responses of the series-biased GBYV micro-LED arrays under the specific current density for VLC measurement. (c) The microwave reflectance (S11) parameters of blue micro-LED arrays with different numbers of pixels in series under the current density of 4 kA/cm2 plotted on the Smith chart from 10 MHz to 1 GHz. (d) The impedance magnitude versus frequency of 20-μm blue micro-LED arrays with different numbers of pixels in series under the current density of 4 kA/cm2.
    Fig. 5. (a) The modulation bandwidths versus pixel numbers of the GBYV micro-LEDs under the same injection current density. (b) The frequency responses of the series-biased GBYV micro-LED arrays under the specific current density for VLC measurement. (c) The microwave reflectance (S11) parameters of blue micro-LED arrays with different numbers of pixels in series under the current density of 4  kA/cm2 plotted on the Smith chart from 10 MHz to 1 GHz. (d) The impedance magnitude versus frequency of 20-μm blue micro-LED arrays with different numbers of pixels in series under the current density of 4  kA/cm2.
    Schematic of the experimental setup for the multicolor series connection micro-LED arrays-based long-distance VLC system.
    Fig. 6. Schematic of the experimental setup for the multicolor series connection micro-LED arrays-based long-distance VLC system.
    (a) Light output powers of the 20-μm 3×3 violet micro-LED array at the current density of 6 kA/cm2 and the 20-μm 3×3 blue micro-LED array at the current density of 4 kA/cm2 as a function of operating time. (b) The received average SNR as a function of VPP for the four micro-LED arrays.
    Fig. 7. (a) Light output powers of the 20-μm 3×3 violet micro-LED array at the current density of 6  kA/cm2 and the 20-μm 3×3 blue micro-LED array at the current density of 4  kA/cm2 as a function of operating time. (b) The received average SNR as a function of VPP for the four micro-LED arrays.
    SNR distributions, bit allocations, and power ratios versus frequency for (a) 400-nm, (b) 451-nm, (c) 50-nm, and (d) 556-nm channels.
    Fig. 8. SNR distributions, bit allocations, and power ratios versus frequency for (a) 400-nm, (b) 451-nm, (c) 50-nm, and (d) 556-nm channels.
    Power spectra for (a) 400-nm, (b) 451-nm, (c) 509-nm, and (d) 556-nm channels.
    Fig. 9. Power spectra for (a) 400-nm, (b) 451-nm, (c) 509-nm, and (d) 556-nm channels.
    (a) Constellation plots for the 400-nm channel including the 4, 8, 16, 32, 64, and 128 QAMs. (b) SNR distributions of the 20-μm violet single-pixel and series connection devices under the current density of 6 kA/cm2 before preequalization.
    Fig. 10. (a) Constellation plots for the 400-nm channel including the 4, 8, 16, 32, 64, and 128 QAMs. (b) SNR distributions of the 20-μm violet single-pixel and series connection devices under the current density of 6  kA/cm2 before preequalization.
    LED TypeSystem TypeAggregate Data RateDistanceData Rate × DistancePerformance of the Best Three ChannelsReference
    LED (R) + μLEDs (GB)aReal WDMb11.28 Gbps1.5-m free space16.92 Gbps m7.09 Gbps m (B)[12]
    3.84 Gbps m (G)
    6 Gbps m (R)
    LEDs (RGBYCc)Proof of conceptd15.17 Gbps1.2-m underwater18.2 Gbps m3.76 Gbps m (B)[13]
    3.74 Gbps m (C)
    3.72 Gbps m (G)
    LEDs (RGBY)Proof-of-concept19.66 Gbps1.6-m free space31.46 Gbps m8.35 Gbps m (B)[14]
    Real WDM16.92 Gbps1.6-m free space27.07 Gbps m8.42 Gbps m (G)
    8.21 Gbps m (R)
    LEDs (eight color)Proof of concept20.09 Gbps1.2-m underwater24.11 Gbps m3.46 Gbps m (B)[15]
    3.29 Gbps m (G)
    3.79 Gbps m (R)
    Mini-LEDs (tricolor)Proof of concept16.6 Gbps2-m free space33.2 Gbps m14 Gbps m (B)[16]
    14 Gbps m (C)
    5.2 Gbps m (G)
    LEDs (eight color)Proof of concept24.25 Gbps1.2-m free space29.1 Gbps m3.98 Gbps m (B)[17]
    3.91 Gbps m (G)
    4.15 Gbps m (R)
    LEDs (tricolor) + μLEDs (five color)Proof of concept25.2 Gbps0.25-m free space6.3 Gbps m1.21 Gbps m (V)[18]
    1.09 Gbps m (B)
    1.04 Gbps m (G)
    μLEDs (UVA + UVB + UVC)Real WDM10.32 Gbps0.5-m free space5.16 Gbps m1.57 Gbps m (UVA)[19]
    Proof of concept11.48 Gbps0.5-m free space5.74 Gbps m1.51 Gbps m (UVB)
    2.08 Gbps m (UVC)
    LEDs (RGB)Proof of concept3.1 Gbps5-m fiber15.5 Gbps m60 Gbps m (B)[20]
    2 Gbps100-m fiber200 Gbps m60 Gbps m (G)
    80 Gbps m (R)
    μLEDs (VBGY)Proof of concept15.78 Gbps13-m free space205.1 Gbps m74.23 Gbps m (V)This paper
    63.18 Gbps m (B)
    57.07 Gbps m (G)
    Table 1. Summary of LED-Based WDM-OWC Systems with the Aggregate Data Rate over 10 Gbps in Recent Years
    Pixel SizeStable Operating Current Density/LOPAchieved 3  dB BandwidthLOP·Bandwidth
    40 μm (3×3)1  kA/cm2/13.8  mW84.2 MHz1160 mW MHz
    30 μm (3×3)2  kA/cm2/12.0  mW122.4 MHz1468 mW MHz
    20 μm (3×3)4  kA/cm2/9.52  mW214.4 MHz2041 mW MHz
    10 μm (3×3)6  kA/cm2/2.66  mW360.7 MHz957.6 mW MHz
    Table 2. Performances of Blue Micro-LED Arrays with Different Pixel Sizes and Different Operating Current Densities
    Shijie Zhu, Pengjiang Qiu, Xinyi Shan, Runze Lin, Zhou Wang, Zuxin Jin, Xugao Cui, Guoqi Zhang, Pengfei Tian, "High-speed long-distance visible light communication based on multicolor series connection micro-LEDs and wavelength division multiplexing," Photonics Res. 10, 1892 (2022)
    Download Citation