[3] MAGGIO E, CAVALLARO A. Accurate appearance based bayesian tracking for maneuvering targets [J].computer Vision and Image Understanding,2009,113:544-555.
[4] WANG Y ZH, LIANG Y, ZHAO CH H. Kernel-based tracking based on adaptive fusion of multiple cues [J]. Acta Automatica Sinica, 2008,34(4):393-399.
[5] ZHANG K, KWOK J T, TANG M. Accelerate convergence using dynamic mean shift[C]. Proceedings of the 9th European Conference on Computer Vision, New York, 2006:257-268.
[6] FASHING M, TOMASI C. Mean Shift is a bound optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(3):471-474.
[7] SHEN C, BROOKS M J. A fast global kernel density mode seeking with application to localization and tracking[C]. Proceedings of IEEE International Conference on Computer Vision, Los Alamitos, 2005:1516-1523.
[8] YIN Z Z, ROBERT T. Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Anchorage,2008:1-8.
[9] ELGAMMAL A, DURAISWAMI R. Probabilistic tracking in joint feature-spatial spaces[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington, D.C,2004:790-797.
[10] COMANICIU D, MEER P. Kernel-based object tracking [J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 2003,25(5):564-577.
[11] CARREIRA PERPINAN M A. Acceleration strategies for Gaussian Mean Shift image segmentation[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,New York, 2006:543-549.