
- Photonics Research
- Vol. 9, Issue 10, 1907 (2021)
Abstract
1. INTRODUCTION
Ultraviolet light in the solar-blind band (200–280 nm) hardly radiates to the Earth’s surface due to the strong atmospheric absorption. Therefore, solar-blind ultraviolet (SBUV) detectors have attracted tremendous interest in the scope of fire monitoring, high-voltage equipment corona discharge monitoring, or biological imaging [1–5]. AlGaN material, with a tunable wide bandgap and high absorption coefficient from 3.4 to 6.2 eV, is one of the most suitable materials for SBUV detectors [6]. Moreover, AlGaN SBUV detectors have the advantage of small-size, low-power-consumption, and easy-integration over the most frequently used photomultiplier tubes that feature high vacuum, high voltage, and huge volume [7–9]. Although considerable progress has been made on AlGaN SBUV detectors in recent years, the performance still cannot meet the requirements of real applications because of the poor crystal quality and
AlGaN-based detectors generally exhibit five structures, including photoconductor [12], photovoltaic metal-semiconductor-metal (MSM) [13], Schottky diode [14],
Therefore, there is an urgent need to exploit vertical high-gain structures for AlGaN SBUV detectors, especially at zero bias. However, traditional vertical structures such as the Schottky diode,
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
In this work, we have proposed a strategy of introducing a photoconductive gain mechanism into the vertical AlGaN SBUV detector and have realized it in a
2. DEVICE PRINCIPLE
As noted, there are two gain mechanisms in the AlGaN SBUV detector, i.e., photoconductive and avalanche gains. As for the avalanche gain, it is necessary to reach the critical electric field, which is high for Al-rich AlGaN materials. This leads to a high work voltage and complex quenching circuit. However, as for the photoconductive gain, the high voltage and complex circuit are not essential. In order to effectively introduce photoconductive gain in vertical structures, it is required to clearly understand the key factors for determining the gain.
The photoconductive gain can be calculated through Eq. (1):
Based on the previous analyses, structures that can prolong the carrier lifetime and trap one type of carriers shall be designed into the vertical AlGaN SBUV detectors. Wurtzite AlGaN materials possess strong spontaneous and piezoelectronic polarizations, which can induce a strong built-in electric field in their MQW structures. Figure 1(a) shows an AlGaN single quantum well along the [0001] direction. As can be seen, the built-in electric field in the well layer is along the [000–1] direction, while that in the barrier layer is opposite. The carriers with opposite charge polarities in the well layer can be separated by the built-in electric field and then concentrate at different regions, which is known as the QCSE. The QCSE causes the wave function overlap of electrons and holes to decrease, resulting in the suppressed recombination probability. Correspondingly, the carrier lifetime can be obviously prolonged by utilizing MQW, resulting in photoconductive gain. On the other hand, because the effective mass of holes is much higher than that of electrons, and because the intervalley scattering of electrons is much less than that of holes [8], the holes are easier to be confined by the quantum wells than electrons. As a result, the unipolar carrier transport will be achieved and the photoconductive gain will be increased. Consequently, it is believed that the photoconductive gain can be generated in a vertical AlGaN SBUV
Figure 1.(a) QCSE in a single quantum well. (b) Energy band diagram of AlGaN SBUV
Figure 1(b) illustrates our basic device structure design. An MQW structure is introduced into the depletion region of a vertical back-illuminated
3. MATERIALS AND METHODS
A. Simulations
Numerical simulations are conducted by APSYS to verify the effects of the MQW on the carrier transport properties in the AlGaN SBUV
Figure 2.Photodiode structures (a) with and (b) without MQW.
B. Materials Growth
The devices are grown on single-polished
C. Device Fabrication
Standard semiconductor device fabrication processes are used to prepare the AlGaN SBUV detectors. First, a
D. Characterizations
A high-resolution X-ray diffractometer (Brucker D8 DISCOVER) is adopted to estimate the Al content and crystal quality of the epilayers. A high-resolution scanning transmission electron microscope (HR-STEM) is employed to investigate the cross section of the devices, especially the MQW region. An optical microscope (OM, Nikon ECLIPSE LV15ONA) is used to observe the mesa and electrodes of the detectors. The current-voltage (I-V) curves are measured by the PDA FS-Pro 380 semiconductor analyzer. The spectral responses are measured by a DSR 100 system that is equipped with a xenon lamp, chopper, monochromator, Keithley 6487, SR830 lock-in amplifier, and standard Si detector. All response spectra are calibrated by the standard Si detector by considering the effective photosensitive area [40].
4. RESULTS AND DISCUSSION
The I-V curves of the two devices in dark and on illumination are calculated as shown in Fig. 3(a). The device
Figure 3.(a) Simulated
The energy band, current density, and carrier distributions are extracted to investigate the mechanism of the response gain. Figures 4(a) and 4(b) show the energy bands in the depletion regions for devices
Figure 4.Simulated energy bands for devices (a)
Figures 4(c) and 4(d) show the electron and hole current profiles for devices
Devices are experimentally fabricated to verify our conceptions. Figure 5(a) illustrates the schematic structure of device
Figure 5.(a) Schematic structure diagram of device
The I-V curves and spectral responses of devices
Figure 6.(a) Photo and dark currents for devices
Figure 6(b) shows the spectral response of device
Figure 6(d) summarizes the zero-bias peak responsivity and its corresponding wavelength of this work and other reported self-powered AlGaN SBUV detectors. As is seen, although significant effort has been spent on improving the self-power performance over the past decades, the highest reported responsivity is just 0.211 A/W at 289 nm, corresponding to an EQE of 92%. The EQE below 100% indicates the current gain has not been realized in self-power work mode. Otherwise, because of the restriction by the crystal quality and
5. CONCLUSIONS
In summary, AlGaN SBUV detectors are investigated in this work. A photoconductive gain mechanism introduced into the vertical
References
[1] R. A. Yotter, D. M. Wilson. A review of photodetectors for sensing light-emitting reporters in biological systems. IEEE Sens. J., 3, 288-303(2003).
[2] Z. Y. Xu, H. P. Ding, B. M. Sadler, G. Chen. Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links. Opt. Lett., 33, 1860-1862(2008).
[3] W. J. Zhou, H. Li, X. Yi, J. Tu, J. H. Yu. A criterion for UV detection of AC corona inception in a rod-plane air gap. IEEE Trans. Dielectr. Electr. Insul., 18, 232-237(2011).
[4] L. W. Sang, M. Y. Liao, Y. Koide, M. Sumiya. High-temperature ultraviolet detection based on InGaN Schottky photodiodes. Appl. Phys. Lett., 99, 031115(2011).
[5] R. Z. Yuan, J. S. Ma. Review of ultraviolet non-line-of-sight communication. China Commun., 13, 63-75(2016).
[6] D. B. Li, K. Jiang, X. J. Sun, C. L. Guo. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photon., 10, 43-110(2018).
[7] H. Ding, G. Chen, Z. Xu, B. M. Sadler. Channel modelling and performance of non-line-of-sight ultraviolet scattering communications. IET Commun., 6, 514-524(2012).
[8] J. Y. Zheng, L. Wang, X. Z. Wu, Z. B. Hao, C. G. Sun, B. Xiong, Y. Luo, Y. J. Han, J. Wang, H. T. Li, J. Brault, S. Matta, M. A. Khalfioui, J. C. Yan, T. Wei, Y. Zhang, J. X. Wang. A PMT-like high gain avalanche photodiode based on GaN/AlN periodically stacked structure. Appl. Phys. Lett., 109, 241105(2016).
[9] A. M. Armstrong, B. A. Klein, A. A. Allerman, A. G. Baca, M. H. Crawford, J. Podkaminer, C. R. Perez, M. P. Siegal, E. A. Douglas, V. M. Abate, F. Leonard. Visible- and solar-blind photodetectors using AlGaN high electron mobility transistors with a nanodot-based floating gate. Photon. Res., 7, B24-B31(2019).
[10] K. Jiang, X. J. Sun, J. W. Ben, Y. P. Jia, H. N. Liu, Y. Wang, Y. Wu, C. H. Kai, D. B. Li. The defect evolution in homoepitaxial AlN layers grown by high-temperature metal-organic chemical vapor deposition. CrystEngComm, 20, 2720-2728(2018).
[11] K. Jiang, X. J. Sun, Z. M. Shi, H. Zang, J. W. Ben, H. X. Deng, D. B. Li. Quantum engineering of non-equilibrium efficient p-doping in ultra-wide band-gap nitrides. Light Sci. Appl., 10, 69(2021).
[12] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, M. Razeghi. AlGaN ultraviolet photoconductors grown on sapphire. Appl. Phys. Lett., 68, 2100-2101(1996).
[13] E. Monroy, F. Calle, E. Munoz. AlGaN metal semiconductor-metal photodiodes. Appl. Phys. Lett., 74, 3401-3403(1999).
[14] H. Jiang, T. Egawa. High quality AlGaN solar-blind Schottky photodiodes fabricated on AIN/sapphire template. Appl. Phys. Lett., 90, 121121(2007).
[15] A. Kalra, S. Rathkanthiwar, R. Muralidharan, S. Raghavan, D. N. Nath. Polarization-graded AlGaN solar-blind p-i-n detector with 92% zero-bias external quantum efficiency. IEEE Photon. Technol. Lett., 31, 1237-1240(2019).
[16] M. J. Hou, Z. X. Qin, C. G. He, L. S. Wei, F. J. Xu, X. Q. Wang, B. Shen. Study on AlGaN P-I-N-I-N solar-blind avalanche photodiodes with Al0.45Ga0.55N multiplication layer. Electron. Mater. Lett., 11, 1053-1058(2015).
[17] Q. Cai, K. X. Dong, Z. L. Xie, Y. Tang, J. J. Xue, D. J. Chen. Enhanced front-illuminated p-i-p-i-n GaN/AlGaN ultraviolet avalanche photodiodes. Mater. Sci. Semicond. Process., 96, 24-29(2019).
[18] L. J. Sun, Z. S. Lv, Z. H. Zhang, X. J. Qiu, H. Jiang. High-performance AlGaN heterojunction phototransistor with dopant-free polarization-doped P-base. IEEE Electron Device Lett., 41, 325-328(2020).
[19] M. Ishiguro, K. Ikeda, M. Mizuno, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki. Control of the detection wavelength in AlGaN/GaN-based hetero-field-effect-transistor photosensors. Jpn. J. Appl. Phys., 52, 08JF02(2013).
[20] J. A. Garrido, E. Monroy, I. Izpura, E. Munoz. Photoconductive gain modelling of GaN photodetectors. Semicond. Sci. Technol., 13, 563-568(1998).
[21] B. W. Lim, Q. C. Chen, J. Y. Yang, M. A. Khan. High responsivity intrinsic photoconductors based on Al
[22] S. Butun, T. Tut, B. Butun, M. Gokkavas, H. B. Yu, E. Ozbay. Deep-ultraviolet Al0.75Ga0.25N photodiodes with low cutoff wavelength. Appl. Phys. Lett., 88, 123503(2006).
[23] I. S. Seo, I. H. Lee, Y. J. Park, C. R. Lee. Characteristics of UV photodetector fabricated by Al0.3Ga0.7N/GaN heterostructure. J. Cryst. Growth, 252, 51-57(2003).
[24] X. J. Sun, D. B. Li, Z. M. Li, H. Song, H. Jiang, Y. R. Chen, G. Q. Miao, Z. W. Zhang. High spectral response of self-driven GaN-based detectors by controlling the contact barrier height. Sci. Rep., 5, 16819(2015).
[25] M. Brendel, M. Helbling, A. Knigge, F. Brunner, M. Weyers. Solar-blind AlGaN MSM photodetectors with 24% external quantum efficiency at 0 V. Electron. Lett., 51, 1598-1600(2015).
[26] M. S. Shur, M. A. Khan. GaN/AIGaN heterostructure devices: photodetectors and field-effect transistors. MRS Bull., 22, 44-50(1997).
[27] T. Narita, A. Wakejima, T. Egawa. Ultraviolet photodetectors using transparent gate AlGaN/GaN high electron mobility transistor on silicon substrate. Jpn. J. Appl. Phys., 52, 01AG06(2013).
[28] Z. G. Shao, X. F. Yang, H. F. You, D. J. Chen, H. Lu, R. Zhang, Y. D. Zheng, K. X. Dong. Ionization-enhanced AlGaN heterostructure avalanche photodiodes. IEEE Electron Device Lett., 38, 485-488(2017).
[29] Q. Cai, W. K. Luo, R. Y. Yuan, H. F. You, Q. Li, M. Li, D. J. Chen, H. Lu, R. Zhang, Y. D. Zheng. Back-illuminated AlGaN heterostructure solar-blind avalanche with one-dimensional photonic crystal filter. Opt. Express, 28, 6027-6035(2020).
[30] W. Y. Han, Z. W. Zhang, Z. M. Li, Y. R. Chen, H. Song, G. Q. Miao, F. Fan, H. F. Chen, Z. Liu, H. Jiang. High performance back-illuminated MIS structure AlGaN solar-blind ultraviolet photodiodes. J. Mater. Sci. Mater. Electron., 29, 9077-9082(2018).
[31] W. Yang, T. Nohava, S. Krishnankutty, R. Torreano, S. McPherson, H. Marsh. High gain GaN/AlGaN heterojunction phototransistor. Appl. Phys. Lett., 73, 978-980(1998).
[32] M. L. Lee, J. K. Sheu, Y.-R. Shu. Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransistors with high optical gain and high rejection ratio. Appl. Phys. Lett., 92, 053506(2008).
[33] S. J. Tang, L. X. Zhang, H. L. Wu, C. S. Liu, H. Jiang. Improved performance of ultraviolet AlGaN/GaN npn HPTs by a thin lightly-doped n-AlGaN insertion layer. AIP Adv., 9, 125239(2019).
[34] L. X. Zhang, S. J. Tang, C. S. Liu, B. Li, H. L. Wu, H. L. Wang, Z. S. Wu, H. Jiang. Demonstration of solar-blind Al
[35] O. Katz, A. Horn, G. Bahir, J. Salzman. Electron mobility in an AlGaN/GaN two-dimensional electron gas. I. Carrier concentration dependent mobility. IEEE Trans. Electron. Devices, 50, 2002-2008(2003).
[36] J. Schlegel, M. Brendel, M. Martens, A. Knigge, J. Rass, S. Einfeldt, F. Brunner, M. Weyers, M. Kneissl. Influence of carrier lifetime, transit time, and operation voltages on the photoresponse of visible-blind AlGaN metal-semiconductor-metal photodetectors. Jpn. J. Appl. Phys., 52, 08JF01(2013).
[37] Z. H. Zhang, L. P. Li, Y. H. Zhang, F. J. Xu, Q. Shi, B. Shen, W. G. Bi. On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes. Opt. Express, 25, 16550-16559(2017).
[38] J. F. Muth, J. D. Brown, M. A. L. Johnson, Z. H. Yu, R. M. Kolbas, J. W. Cook, J. F. Schetzina. Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys. Mater. Res. Soc. Internet J. Nitride Semicond., 4, 502-507(1999).
[39] D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, M. Stutzmann. Optical constants of epitaxial AlGaN films and their temperature dependence. J. Appl. Phys., 82, 5090-5096(1997).
[40] K. Jiang, X. J. Sun, Z. H. Zhang, J. W. Ben, J. M. Che, Z. M. Shi, Y. P. Jia, Y. Chen, S. L. Zhang, W. Lv, D. B. Li. Polarization-enhanced AlGaN solar-blind ultraviolet detectors. Photon. Res., 8, 1243-1252(2020).
[41] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini. Low dark current p-i-n (Al,Ga)N-based solar-blind UV detectors on laterally epitaxially overgrown GaN. Conference on Optoelectronic & Microelectronic Materials Devices, 175-178(1998).
[42] C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, I. Akasaki. Solar-blind UV photodetectors based on GaN/AlGaN p-i-n photodiodes. Jpn. J. Appl. Phys., 39, L387-L389(2000).
[43] J. D. Brown, J. Z. Li, P. Srinivasan, J. Matthews, J. F. Schetzina. Solar-blind AlGaN heterostructure photodiodes. MRS Internet J. Nitride Semicond. Res., 5, 35-37(2000).
[44] D. J. H. Lambert, M. M. Wong, U. Chowdhury, C. Collins, T. Li, H. K. Kwon, B. S. Shelton, T. G. Zhu, J. C. Campbell, R. D. Dupuis. Back illuminated AlGaN solar-blind photodetectors. Appl. Phys. Lett., 77, 1900-1902(2000).
[45] J. P. Long, S. Varadaraajan, J. Matthews, J. F. Schetzina. UV detectors and focal plane array imagers based on AlGaN p-i-n photodiodes. Opto-Electron Rev., 10, 251-260(2002).
[46] N. Biyikli, I. Kimukin, O. Aytur, E. Ozbay. Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity. IEEE Photon. Technol. Lett., 16, 1718-1720(2004).
[47] R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. R. Darvish, P. Kung, M. Razeghi. High quantum efficiency AlGaN solar-blind p-i-n photodiodes. Appl. Phys. Lett., 84, 1248-1250(2004).
[48] E. Ozbay, T. Tut, N. Biyikli. High-performance solar-blind AlGaN photodetectors. Proc. SPIE, 5732, 375-388(2005).
[49] M. B. Reine, A. Hairston, P. Lamarre, K. K. Wong, S. P. Tobin, A. K. Sood, C. Cooke, M. Pophristic, S. Guo, B. Peres, R. Singh, C. R. Eddy, U. Chowdhury, M. M. Wong, R. D. Dupuis, T. Li, S. P. DenBaars. Solar-blind AlGaN 256×256 p-i-n detectors and focal plane arrays. Proc. SPIE, 6119, 611901(2006).
[50] T. Tut, T. Yelboga, E. Ulker, E. Ozbay. Solar-blind AlGaN-based p-i-n photodetectors with high breakdown voltage and detectivity. Appl. Phys. Lett., 92, 103502(2008).
[51] D. G. Zhao, S. Zhang, D. S. Jiang, J. J. Zhu, Z. S. Liu, H. Wang, S. M. Zhang, B. S. Zhang, H. Yang. A study on the spectral response of back-illuminated p-i-n AlGaN heterojunction ultraviolet photodetector. J. Appl. Phys., 110, 053701(2011).
[52] X. J. Sun, D. B. Li, Y. R. Chen, H. Song, H. Jiang, Z. M. Li, G. Q. Miao, Z. W. Zhang.
[53] E. Cicek, R. McClintock, C. Y. Cho, B. Rahnema, M. Razeghi. Al
[54] B. Albrecht, S. Kopta, O. John, M. Rutters, M. Kunzer, R. Driad, N. Marenco, K. Kohler, M. Walther, O. Ambacher. Improved AlGaN p-i-n photodetectors for monitoring of ultraviolet radiation. IEEE J. Sel. Top. Quantum Electron., 20, 166-172(2014).
[55] X. J. Li, D. G. Zhao, D. S. Jiang, Z. S. Liu, P. Chen, L. C. Le, J. Yang, X. G. He. Performance comparison of front- and back-illuminated modes of the AlGaN-based p-i-n solar-blind ultraviolet photodetectors. J. Vac. Sci. Technol. B, 32, 031204(2014).
[56] Y. R. Chen, Z. W. Zhang, Z. M. Li, H. Jiang, G. Q. Miao, H. Song. The influence of n-AlGaN inserted layer on the performance of back-illuminated AlGaN-based p-i-n ultraviolet photodetectors. Phys. Status Solidi A, 215, 1700358(2017).
[57] Y. R. Chen, Z. W. Zhang, H. Jiang, Z. M. Li, G. Q. Miao, H. Song. The optimized growth of AlN templates for back-illuminated AlGaN-based solar-blind ultraviolet photodetectors by MOCVD. J. Mater. Chem. C, 6, 4936-4942(2018).
[58] T. T. T. Pham, J. H. Choi, C. H. Cho, H. Y. Cha. Filter-free AlGaN photodiode with high quantum efficiency for partial discharge detection. J. Semicond. Technol. Sci., 20, 141-144(2020).
[59] Z. K. Cao, D. G. Zhao, F. Liang, Z. S. Liu. Fabrication of high quantum efficiency p-i-n AlGaN detector and optimization of p-layer and i-layer thickness. Mater. Res. Express, 7, 115902(2020).
[60] Y. R. Chen, Z. W. Zhang, G. Q. Miao, H. Jiang, Z. M. Li, H. Song. Epitaxial growth of polarization-graded AlGaN-based solar-blind ultraviolet photodetectors on pre-grown AlN templates. Mater. Lett., 281, 128638(2020).
[61] N. Biyikli, O. Aytur, I. Kimukin, T. Tut, E. Ozbay. Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity. Appl. Phys. Lett., 81, 3272-3274(2002).
[62] H. Jiang, T. Egawa, H. Ishikawa. AlGaN solar-blind Schottky photodiodes fabricated on 4H-SiC. IEEE Photon. Technol. Lett., 18, 1353-1355(2006).
[63] Z. Q. Huang, J. F. Li, W. L. Zhang, H. Jiang. AlGaN solar-blind avalanche photodiodes with enhanced multiplication gain using back-illuminated structure. Appl. Phys. Express, 6, 054101(2013).

Set citation alerts for the article
Please enter your email address