[1] FUGATE R Q, FRIED D L, AMEER G A, et al.. Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star[J]. Nature, 1991, 353(6340): 144-146.
[2] JOYCE R, BOYER C, DAGGERT L, et al.. The laser guide star facility for the thirty meter telescope[J]. Proceedings of SPIE, 2006, 6272: 62721H.
[3] WEI K, BO Y, XUE X H, et al.. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[J]. Proceedings of SPIE, 2012, 8447: 84471R.
[4] JIN K, WEI K, XIE S Y, et al.. Coupling efficiency measurements for long-pulsed solid sodium laser based on measured sodium profile data[J]. Proceedings of SPIE, 2014, 9148: 91483L.
[5] OTAROLA O, HICKSON P, GAGNE R, et al.. On-Sky tests of a high-power pulsed laser for sodium laser guide star adaptive optics[J]. Journal of Astronomical Instrumentation, 2016, 5(2): 1650001.
[6] LU Y H, FAN G B, REN H J, et al.. High-average-power narrow-line-width sum frequency generation 589 nm laser[J]. Proceedings of SPIE, 2015, 9650: 965008.
[7] LU Y F, XIE S Y, BO Y, et al.. Generation of tunable and narrow linewidth continuous-wave yellow laser by sum-frequency mixing of diode-pumped solid-state Nd: YAG ring lasers[J]. Optics Communications, 2009, 282(17): 3573-3576.
[8] JEYS T H, BRAILOVE A A, MOORADIAN A. Sum frequency generation of sodium resonance radiation[J]. Applied Optics, 1989, 28(13): 2588-2591.
[10] BIENFANG J C, DENMAN C A, GRIME B W, et al.. 20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers[J]. Optics Letters, 2003, 28(22): 2219-2221.
[11] DENMAN C A, HILLMAN P D, MOORE G T, et al.. 20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications[J]. Optical Materials, 2004, 26(4): 507-513.
[12] FUGATE R Q, DENMAN C A, HILLMAN P D, et al.. Progress toward a 50-watt facility-class sodium guide star pump laser[J]. Proceedings of SPIE, 2004, 5490: 1010-1020.
[13] TAYLOR L R, FENG Y, CALIA D B. High power narrowband 589nm frequency doubled fibre laser source[J]. Optics Express, 2009, 17(17): 14687-14693.
[14] FENG Y, TAYLOR L R, CALIA D B. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star[J]. Optics Express, 2009, 17(21): 19021-19026.
[15] TAYLOR L R, FENG Y, CALIA D B. 50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 2010, 18(8): 8540-8555.
[16] CALIA D B, FENG Y, HACKENBERG W, et al.. Laser development for sodium laser guide stars at ESO[J]. The Messenger, 2010, 139: 12-19.
[17] ZHANG L, JIANG H W, CUI S Z, et al.. Versatile Raman fiber laser for sodium laser guide star[J]. Laser & Photonics Reviews, 2014, 8(6): 889-895.
[18] XU Z Y, XIE SH Y, BO Y, et al.. Investigation of 30 W-class second-generation sodium beacon laser[J]. Acta Optica Sinica, 2011, 31(9): 0900111. (in Chinese)
[19] WANG P Y, XIE S Y, BO Y, et al.. 33 W quasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO[J]. Chinese Physics B, 2014, 23(9): 094208.
[20] WANG P Y. Investigation and application of high power quasi-continous-wave microsecond pulse diode-pumped solide-state sodium beacon laser technology[D]. Beijing: Technical Institute of Physics and Chemistry, Graduate University of Chinese Academy of Sciences, 2014. (in Chinese)
[21] LU Y F, XIE SH Y, LIU Y, et al.. High-power narrow linewidth microsecond pulse 1064 nm ring laser[J]. Opt. Precision Eng., 2016, 24(10): 35-40. (in Chinese)