• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0211003 (2023)
Mengxiang Lin1, Xiuping Huang1, Zhiwei Lin1,2,3,4,*, Sidi Hong5, and Jinfu Liu1,2
Author Affiliations
  • 1College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • 2Key Laboratory for Ecology and Resource Statistics of Fujian Province, Cross-Strait Nature Reserve Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • 3College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • 4Forestry Post-Doctoral Station, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • 5New Engineering Industry College, Putian University, Putian 351100, Fujian, China
  • show less
    DOI: 10.3788/LOP212668 Cite this Article Set citation alerts
    Mengxiang Lin, Xiuping Huang, Zhiwei Lin, Sidi Hong, Jinfu Liu. Precipitation Intensity Recognition Based on Convolution Neural Network with Fused Encoded and Decoded Features[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0211003 Copy Citation Text show less
    Schematic diagram of precipitation intensity recognition model fusing encoded and decoded features
    Fig. 1. Schematic diagram of precipitation intensity recognition model fusing encoded and decoded features
    Pseudocode of precipitation intensity recognition model
    Fig. 2. Pseudocode of precipitation intensity recognition model
    Rainfall images of each rainfall intensity. (a) Scattered light rain; (b) light rain; (c) moderate rain; (d) heavy rain; (e) rainstorm; (f) heavy rainstorm
    Fig. 3. Rainfall images of each rainfall intensity. (a) Scattered light rain; (b) light rain; (c) moderate rain; (d) heavy rain; (e) rainstorm; (f) heavy rainstorm
    Training and testing loss curves. (a) Training loss; (b) testing loss
    Fig. 4. Training and testing loss curves. (a) Training loss; (b) testing loss
    Feature maps of each branch in multi-receptive field convolution. (a) Branch 1; (b) branch 2; (c) branch 3; (d) branch 4
    Fig. 5. Feature maps of each branch in multi-receptive field convolution. (a) Branch 1; (b) branch 2; (c) branch 3; (d) branch 4
    Heat map of the proposed model under each rainfall intensity. (a) Scattered light rain; (b) light rain; (c) moderate rain; (d) heavy rain; (e) rainstorm; (f) heavy rainstorm
    Fig. 6. Heat map of the proposed model under each rainfall intensity. (a) Scattered light rain; (b) light rain; (c) moderate rain; (d) heavy rain; (e) rainstorm; (f) heavy rainstorm
    LayerParameters of layerOutput size
    Input224×224×3
    Conv7×7 Conv,64,stride 2112×112×64
    Pool3×3,maxpool,stride 256×56×64
    MRF-ConvBranch 11×1 Conv,96,stride 1Concatenate56×56×384
    Branch 2

    1×1 Conv,64,stride 1

    3×3 Conv,96,stride 1

    Branch 3

    1×1 Conv,64,stride 1

    3×3 Conv,96,stride 1

    3×3 Conv,96,stride 1

    Branch 4

    3×3,avgpool,stride 1

    1×1 Conv,96,stride 1

    Pool2×2,maxpool,stride 228×28×384
    MRF-Conv.As above28×28×384
    Pool2×2,maxpool,stride 214×14×384
    Upsample2×2 Deconv,64,stride 228×28×64
    MRF-ConvAs above28×28×384
    Fusion blockConcatenate 3×3 Conv,96,stride 128×28×96
    Upsample2×2 Deconv,64,stride 256×56×64
    MRF-ConvAs above56×56×384
    Fusion blockConcatenate 3×3 Conv,96,stride 156×56×96
    CNNResnet or DenseNet7×7×1024 or 7×7×2048
    FCGlobal average pool, FC1×1×6
    Table 1. Parameters of each layer ofproposed model
    ModelClass
    Scattered light rain /%

    Light

    rain /%

    Moderate rain /%Heavy rain /%Rainstorm /%Heavy rainstorm /%Overall accuracy /%Parameter /106
    ResNet-5092.994.185.856.872.00.089.423.52
    ResNet-10196.293.487.367.272.033.390.542.51
    ResNet-15292.491.982.649.676.00.087.058.16
    Proposed-ResNet-5097.194.589.066.476.00.091.727.28
    Proposed-ResNet-10195.091.786.662.484.066.789.246.27
    Proposed-ResNet-15293.391.183.660.884.033.387.661.91
    DenseNet-6393.189.786.250.484.00.087.22.31
    DenseNet-12193.891.084.856.876.00.087.86.96
    DenseNet-16992.490.782.861.684.00.087.112.49
    Proposed-DenseNet-6393.891.790.950.480.00.089.86.07
    Proposed-DenseNet-12194.091.688.746.472.033.388.810.74
    Proposed-DenseNet-16989.892.187.250.460.00.088.016.27
    Table 2. Recognition results of different rainfall intensities based on framework of ResNet and DenseNet
    ResNet-50Encoder-decoderFusionAccuracy /%DenseNet-63Encoder-decoderFusionAccuracy /%
    Concat- onceConcat-twiceConcat- onceConcat-twice

    AA

    BB

    AB

    AB

    AB

    BA

    AA

    BB

    AB

    AB

    AB

    BA

    89.487.2
    89.788.3
    89.788.8
    91.788.5
    90.589.0
    91.789.8
    Table 3. Results of ablation experiment
    ModelYearAccuracy /%Parameter /106
    VGG-16201582.6134.29
    VGG-19201581.6139.59
    Inception-V2201583.510.16
    Inception-V3201687.022.77
    Inception-V4201786.442.14
    ResNet-50201689.423.52
    ResNet-101201690.542.51
    ResNet-152201687.058.16
    DenseNet-63201787.22.31
    DenseNet-121201787.86.96
    DenseNet-169201787.112.49
    DCNet-18201787.041.93
    DCNet-101201785.942.58
    NTS201884.026.25
    DCL201986.623.52
    HRNet202087.639.20
    Proposed-DenseNet-63202189.86.07
    Proposed-ResNet-50202191.727.28
    Table 4. Comparison of recognition accuracy with popular CNN
    Place of trainingPlace of testingResNet-101Proposed-ResNet-50
    Changle, Jinan, Minhou, Minqing, Fuqing, YongtaiLianjiang, Luoyuan52.754.1
    Changle, Jinan, Fuqing, Yongtai, Lianjiang, LuoyuanMinhou, Minqing51.660.6
    Changle, Jinan, Minhou, Minqing, Lianjiang, LuoyuanFuqing, Yongtai49.752.8
    Minhou, Minqing, Fuqing, Yongtai, Lianjiang, LuoyuanChangle, Jinan46.446.7
    Table 5. Comparison of recognition accuracy with different locations between training set and test set
    PlaceResNet-101Proposed-ResNet-50
    Changle85.388.3
    Fuqing86.887.3
    Jinan82.483.0
    Lianjiang85.889.5
    Luoyuan83.184.7
    Minhou86.290.2
    Minqing89.991.4
    Yongtai85.989.0
    Table 6. Comparison of recognition accuracy with different locations
    CaseResNet-101Proposed-ResNet-50
    Case 176.476.8
    Case 275.677.4
    Case 373.774.5
    Table 7. Comparison of recognition accuracy after data balance
    Mengxiang Lin, Xiuping Huang, Zhiwei Lin, Sidi Hong, Jinfu Liu. Precipitation Intensity Recognition Based on Convolution Neural Network with Fused Encoded and Decoded Features[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0211003
    Download Citation