
- Photonics Research
- Vol. 9, Issue 7, 1264 (2021)
Abstract
1. INTRODUCTION
Nonclassical states of light have properties that challenge the usual notions of classical physics. These states not only show fundamental differences between quantum and classical physics, but also allow scientists to test the validity of quantum mechanics experimentally. Besides fundamental physics considerations, nonclassical states of light play an essential role in quantum information protocols such as quantum key distributions [1], quantum cryptography [2], quantum entanglement [3], and optical quantum computing [4]. Moreover, certain types of nonclassical states have reduced fluctuations compared to classical states, which may lead to improvements in the field of precision measurements [5–7].
Photon blockade (PB) is an important technique for generating nonclassical light. So far, two physical schemes have been used to achieve a strong PB effect. The conventional photon blockade (CPB) scheme is based on the well-known eigenenergy-level anharmonicity (ELA) in cavity quantum electrodynamics (QED) [2,8]. When a photon is tuned to resonantly excite the atom–cavity QED system from its ground state to the states of the lowest doublet, the absorption of a second photon at the same frequency is blockaded because transitions to higher doublets are significantly off-resonance because of ELA [9]. Consequently, antibunching photons with sub-Poissonian statistical characteristics can be generated. In the strong coupling regime, where the coupling between the quantum emitter and the cavity is larger than the cavity decay rate, this ELA-based CPB has been experimentally and theoretically studied in various quantum systems [9–14], including atom–cavity QED [15–17], optomechanical systems [18–20], circuit QED systems [21–23], Kerr-nonlinearity systems [24–26], and so on.
An unconventional photon blockade (UCPB) relies on the quantum destructive interference (QDI) between two different quantum transition pathways from the ground state to a two-photon excited state. Liew and Savona first proposed the concept of QDI-based UCPB [27,28] via weak nonlinearities, opening more degrees of freedom for operation. Although both CPB and UCPB result in strong antibunched photons, the underlying physical mechanisms are completely different. The reduction of the two-photon state is achieved by a destructive interference in UCPB rather than the nonlinearity of the dressed spectrum in the strong coupling regime. Since strong coupling condition is not required for achieving QDI-based UCPB [29], this scheme has received great attention and it has been proposed for many quantum systems including quantum dots [30], third-order nonlinearity scheme [31,32], optical parametric amplifier scheme [33], optomechanical device [34–36], non-Markovian system [37], two-emitter-cavity [38], and Jaynes–Cummings model [39–42]. Recently, the QDI-induced PB has been demonstrated in superconducting QED systems [43,44]. It must be noted that single-atom UCPB effect can only be achieved in a cavity-driven system, not an atom-driven system [42].
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
In this work, we propose a two-qubit (e.g., two-level atoms) single-cavity system to study a hybrid PB effect in which an ELA-based mechanism and a QDI-based mechanism act cooperatively. The central enabler of this atom-driven hybrid PB is the inter-atom (“super-qubit”) dipole–dipole interaction (DDI). In this configuration a two-qubit system is coherently “locked” by a cavity mode, effectively making it a super-qubit system with two “internal” excitation pathways. Here, each pathway involves one qubit in a coherently locked and driven two-qubit-one-cavity system. This new scheme mimics the four-level diamond excitation scheme in nonlinear optics [45] where robust QDI effect can play a dominant role [46] and we shall refer it as a diamond PB (DPB). We find that the excitation pathways via two individual but locked qubits are indistinct when the qubit resonance frequency is the same as that of the cavity mode, yielding a constructive interference. However, when the qubit resonance frequency is shifted from the cavity mode frequency, the two excitation pathways become distinct, yielding a destructive interference. Unlike UPBs where the field–cavity coupling strength is essential in the destructive interference formed by different excitation pathways in the same single qubit, the DPB scheme described here is independent of coupling strength. This implies that in the presence of DDI both the ELA and QDI can induce PB operations at the same probe field coupling strength. This opens the possibility for an extremely strong PB effect that yields a well-detectable mean photon number, the virtual of an ELA-PB, and yet an extremely small
2. MODEL SYSTEM
We consider two identical two-level qubits (two-level atom) with resonant frequency
Figure 1.Sketch of the two-qubit cavity QED system with different cavity mode frequency
The dynamics of this two-qubit coherently driven system is described by the master equation [47]:
3. ELA AND QDI-INDUCED PBS IN THE ABSENCE OF DDI
We first consider the case where the DDI is absent, i.e., two qubits are well separated with
Figure 2.(a), (b) The anharmonic ladder-type energy structure and the destructive interference pathways for the ELA-based and QDI-induced PBs, respectively. In (a), the absorption of a second photon of the pump field will be blocked due to the large energy mismatch if the pump field is tuned to the state
To show this feature, we calculate the second-order correlation function
The physical mechanism of the QDI-based PB can be explained by using the collective state picture. Figure 2(b) exhibits two pathways for two-photon excitation of the state
We note that such a quantum interference by excitation pathways does not exist in a single-qubit atom-driven QED system [42]. In the single-qubit case, the two-photon state
4. DIPOLE–DIPOLE INTERACTION INDUCED STRONG PB EFFECT
Figure 2(c) shows that the optimum operation regimes of the ELA scheme and the QDI scheme occur at different PB operational frequencies. We naturally ask if an additional interaction control mechanism can enable optimum performance of both regimes at a single PB operation frequency so that the advantages of both schemes can be realized simultaneously. As we show below, the DDI between two atoms can indeed achieve this goal, resulting in a hybrid PB that preserves the virtue of large mean photon number as well as the extremely small
In the presence of DDI, the state
Figure 3.Logarithmic plots of (a) the second-order correlation function
Based on the relation
Figure 4.Logarithmic plots of (a) the second-order correlation function
Taking
Figure 5.Logarithmic plots of (a) the second-order correlation function
Besides coupling strength, the atom driving field Rabi frequency and atomic decay rate also affect the PB effect. As shown in Fig. 6(a), although
Figure 6.(a) The second-order correlation function
5. EXPERIMENTAL CONSIDERATIONS
The proposed two-qubit hybrid PB/DPB model may be realized by placing two quantum dots in an optical cavity/waveguide [51–53] or a superconductive microwave resonator with two Rydberg atoms [43,54–56]. With current experimental technology [57], the minimal condition of
6. CONCLUSION
In summary, we have investigated a new photon blockade effect using an atom–atom dipole–dipole interaction assisted joint ELA- and QDI-scheme two-qubit QED system. In the absence of DDI, we show that optimal QDI-induced photon blockade can be realized only at qubit resonance frequency that is different from the cavity mode frequency and the PB operation mean photon number is low. We derived conditions for the ELA-based CPB and QDI-based UCPB, revealing that the condition for QDI-induced PB depends only on the pump field frequency and the PB effect is insensitive to the qubit–cavity coupling strength. This new joint ELA-QDI PB scheme with DDI as a mediator forms a highly effective hybrid diamond PB that exhibits a very strong PB effect, having more than an order of magnitude improvement on mean photon numbers and yet retaining the extremely low second-order correlation function. Our work provides a theoretical foundation for possible experimental demonstration of this diamond-scheme PB for highly efficient PB operation. The implementation of this protocol is potentially demonstrable using quantum systems such as a semiconductor quantum dot or quantum well cavity QED system [62,63], Rydberg atom–cavity QED system [64,65], and circuit cavity QED system [66]. It may lead to a new type of hybrid single-photon source for quantum information processing and communication.
Acknowledgment
Acknowledgment. We acknowledge the discussion with Prof. G. S. Agarwal at Texas A&M University.
APPENDIX A
We first consider the case where the DDI is absent. Neglecting the driving term (i.e.,?setting
Specifically, in the one-photon space, the eigenvalues of the Hamiltonian
The condition of the ELA-based PB can be obtained by setting
Likewise, one can obtain the same condition for
In the weak driving case (i.e.,?
Under the weak driving assumption, i.e.,
Then, the realization of
In Fig.?
Figure 7.Logarithmic plot of (a) the equal-time second-order correlation function
Figure 8.Logarithmic plot of (a) the equal-time second-order correlation function
References
[1] M. Lucamarini, Z. L. Yuan, J. F. Dynes, A. J. Shields. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557, 400-403(2018).
[2] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).
[3] J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, H. Weinfurter. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett., 96, 030404(2006).
[4] J. L. O’brien. Optical quantum computing. Science, 318, 1567-1570(2007).
[5] M. Xiao, L.-A. Wu, H. J. Kimble. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett., 59, 278-281(1987).
[6] I. Kruse, K. Lange, J. Peise, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, C. Lisdat, L. Santos, A. Smerzi, C. Klempt. Improvement of an atomic clock using squeezed vacuum. Phys. Rev. Lett., 117, 143004(2016).
[7] C. Lei, A. Weinstein, J. Suh, E. Wollman, A. Kronwald, F. Marquardt, A. Clerk, K. Schwab. Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit. Phys. Rev. Lett., 117, 100801(2016).
[8] M. O. Scully, M. S. Zubairy. Quantum Optics(1999).
[9] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature, 436, 87-90(2005).
[10] A. Kuhn, M. Hennrich, G. Rempe. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett., 89, 067901(2002).
[11] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vučković. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys., 4, 859-863(2008).
[12] A. Ridolfo, M. Leib, S. Savasta, M. J. Hartmann. Photon blockade in the ultrastrong coupling regime. Phys. Rev. Lett., 109, 193602(2012).
[13] K. Müller, A. Rundquist, K. A. Fischer, T. Sarmiento, K. G. Lagoudakis, Y. A. Kelaita, C. Sánchez Muñoz, E. del Valle, F. P. Laussy, J. Vučković. Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett., 114, 233601(2015).
[14] R. Sáez-Blázquez, J. Feist, F. J. Garca-Vidal, A. I. Fernández-Domnguez. Photon statistics in collective strong coupling: nanocavities and microcavities. Phys. Rev. A, 98, 013839(2018).
[15] C. Hamsen, K. N. Tolazzi, T. Wilk, G. Rempe. Two-photon blockade in an atom-driven cavity QED system. Phys. Rev. Lett., 118, 133604(2017).
[16] C. J. Zhu, Y. P. Yang, G. S. Agarwal. Collective multiphoton blockade in cavity quantum electrodynamics. Phys. Rev. A, 95, 063842(2017).
[17] J. Z. Lin, K. Hou, C. J. Zhu, Y. P. Yang. Manipulation and improvement of multiphoton blockade in a cavity-QED system with two cascade three-level atoms. Phys. Rev. A, 99, 053850(2019).
[18] P. Rabl. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 107, 063601(2011).
[19] J.-Q. Liao, F. Nori. Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A, 88, 023853(2013).
[20] H. Xie, C.-G. Liao, X. Shang, M.-Y. Ye, X.-M. Lin. Phonon blockade in a quadratically coupled optomechanical system. Phys. Rev. A, 96, 013861(2017).
[21] A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, A. A. Houck. Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett., 107, 053602(2011).
[22] C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, A. Wallraff. Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett., 106, 243601(2011).
[23] Y.-X. Liu, X.-W. Xu, A. Miranowicz, F. Nori. From blockade to transparency: controllable photon transmission through a circuit-QED system. Phys. Rev. A, 89, 043818(2014).
[24] A. Miranowicz, M. Paprzycka, Y.-X. Liu, J. C. V. Bajer, F. Nori. Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A, 87, 023809(2013).
[25] G. Hovsepyan, A. Shahinyan, G. Y. Kryuchkyan. Multiphoton blockades in pulsed regimes beyond stationary limits. Phys. Rev. A, 90, 013839(2014).
[26] R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, H. Jing. Nonreciprocal photon blockade. Phys. Rev. Lett., 121, 153601(2018).
[27] T. Liew, V. Savona. Single photons from coupled quantum modes. Phys. Rev. Lett., 104, 183601(2010).
[28] H. Flayac, V. Savona. Unconventional photon blockade. Phys. Rev. A, 96, 053810(2017).
[29] H. Snijders, J. Frey, J. Norman, M. Bakker, E. Langman, A. Gossard, J. Bowers, M. Van Exter, D. Bouwmeester, W. Löffler. Purification of a single-photon nonlinearity. Nat. Commun., 7, 12578(2016).
[30] J. Tang, W. Geng, X. Xu. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system. Sci. Rep., 5, 9252(2015).
[31] S. Ferretti, V. Savona, D. Gerace. Optimal antibunching in passive photonic devices based on coupled nonlinear resonators. New J. Phys., 15, 025012(2013).
[32] H. Z. Shen, Y. H. Zhou, X. X. Yi. Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A, 91, 063808(2015).
[33] B. Sarma, A. K. Sarma. Quantum-interference-assisted photon blockade in a cavity via parametric interactions. Phys. Rev. A, 96, 053827(2017).
[34] H. Wang, X. Gu, Y.-X. Liu, A. Miranowicz, F. Nori. Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A, 92, 033806(2015).
[35] B. Li, R. Huang, X. Xu, A. Miranowicz, H. Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 7, 630-641(2019).
[36] X.-W. Xu, A.-X. Chen, Y.-X. Liu. Phonon blockade in a nanomechanical resonator resonantly coupled to a qubit. Phys. Rev. A, 94, 063853(2016).
[37] H. Shen, C. Shang, Y. Zhou, X. Yi. Unconventional single-photon blockade in non-Markovian systems. Phys. Rev. A, 98, 023856(2018).
[38] M. Radulaski, K. A. Fischer, K. G. Lagoudakis, J. L. Zhang, J. Vučković. Photon blockade in two-emitter-cavity systems. Phys. Rev. A, 96, 011801(2017).
[39] M. Bamba, A. Imamoğlu, I. Carusotto, C. Ciuti. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 83, 021802(2011).
[40] A. Majumdar, M. Bajcsy, A. Rundquist, J. Vučković. Loss-enabled sub-Poissonian light generation in a bimodal nanocavity. Phys. Rev. Lett., 108, 183601(2012).
[41] X. Liang, Z. Duan, Q. Guo, C. Liu, S. Guan, Y. Ren. Antibunching effect of photons in a two-level emitter-cavity system. Phys. Rev. A, 100, 063834(2019).
[42] K. Hou, C. Zhu, Y. Yang, G. Agarwal. Interfering pathways for photon blockade in cavity QED with one and two qubits. Phys. Rev. A, 100, 063817(2019).
[43] C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, J. Estève. Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett., 121, 043602(2018).
[44] H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, W. Löffler. Observation of the unconventional photon blockade. Phys. Rev. Lett., 121, 043601(2018).
[45] 45When a four-level atom with two closely spaced middle states is excited by four photons via different middle state (all one-photon excitation) such a system is often referred to as a diamond scheme four-wave mixing. For instance, the excitation of the D-state of an alkali atom simultaneously via S-P1/2-D and S-P3/2-D paths. If only three photons are provided this is the usual 2n-1 excitation scheme in four-wave mixing; see also Ref. [46].
[46] L. Deng, M. Payne, W. Garrett. Effects of multi-photon interferences from internally generated fields in strongly resonant systems. Phys. Rep., 429, 123-242(2006).
[47] G. S. Agarwal. Quantum Optics(2013).
[48] S. de Léséleuc, D. Barredo, V. Lienhard, A. Browaeys, T. Lahaye. Optical control of the resonant dipole-dipole interaction between Rydberg atoms. Phys. Rev. Lett., 119, 053202(2017).
[49] D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, C. S. Adams. Coherent excitation transfer in a spin chain of three Rydberg atoms. Phys. Rev. Lett., 114, 113002(2015).
[50] K. Almutairi, R. Tanaś, Z. Ficek. Generating two-photon entangled states in a driven two-atom system. Phys. Rev. A, 84, 013831(2011).
[51] P. Lodahl, S. Mahmoodian, S. Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys., 87, 347-400(2015).
[52] H. Kim, D. Sridharan, T. C. Shen, G. S. Solomon, E. Waks. Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning. Opt. Express, 19, 2589-2598(2011).
[53] J.-H. Kim, S. Aghaeimeibodi, C. J. Richardson, R. P. Leavitt, E. Waks. Super-radiant emission from quantum dots in a nanophotonic waveguide. Nano Lett., 18, 4734-4740(2018).
[54] J. Majer, J. Chow, J. Gambetta, J. Koch, B. Johnson, J. Schreier, L. Frunzio, D. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf. Coupling superconducting qubits via a cavity bus. Nature, 449, 443-447(2007).
[55] A. Grimm, F. Blanchet, R. Albert, J. Leppäkangas, S. Jebari, D. Hazra, F. Gustavo, J.-L. Thomassin, E. Dupont-Ferrier, F. Portier, M. Hofheinz. Bright on-demand source of antibunched microwave photons based on inelastic cooper pair tunneling. Phys. Rev. X, 9, 021016(2019).
[56] G. Sadiek, W. Al-Drees, M. S. Abdallah. Manipulating entanglement sudden death in two coupled two-level atoms interacting off-resonance with a radiation field: an exact treatment. Opt. Express, 27, 33799-33825(2019).
[57] O. Bitton, S. N. Gupta, G. Haran. Quantum dot plasmonics: from weak to strong coupling. Nanophotonics, 8, 559-575(2019).
[58] A. Browaeys, D. Barredo, T. Lahaye. Experimental investigations of dipole–dipole interactions between a few Rydberg atoms. J. Phys. B, 49, 152001(2016).
[59] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. Yavuz, T. Walker, M. Saffman. Observation of Rydberg blockade between two atoms. Nat. Phys., 5, 110-114(2009).
[60] T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. Yavuz, T. Walker, M. Saffman. Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions. Phys. Rev. Lett., 100, 113003(2008).
[61] R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, D. Meschede. Cavity-modified collective Rayleigh scattering of two atoms. Phys. Rev. Lett., 114, 023601(2015).
[62] M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. Wasilewski, O. Stern, A. Forchel. Coupling and entangling of quantum states in quantum dot molecules. Science, 291, 451-453(2001).
[63] J. D. Cox, M. R. Singh, G. Gumbs, M. A. Anton, F. Carreno. Dipole-dipole interaction between a quantum dot and a graphene nanodisk. Phys. Rev. B, 86, 125452(2012).
[64] M. Saffman, T. Walker. Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A, 72, 022347(2005).
[65] B. T. Gard, K. Jacobs, R. McDermott, M. Saffman. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator. Phys. Rev. A, 96, 013833(2017).
[66] F. Quijandra, U. Naether, S. K. Özdemir, F. Nori, D. Zueco. Pt-symmetric circuit QED. Phys. Rev. A, 97, 053846(2018).

Set citation alerts for the article
Please enter your email address