• Laser & Optoelectronics Progress
  • Vol. 60, Issue 19, 1930002 (2023)
Wu Pan, Yongrui Li*, Bin Zhang, and Haizhu Li
Author Affiliations
  • College of Photoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • show less
    DOI: 10.3788/LOP221300 Cite this Article Set citation alerts
    Wu Pan, Yongrui Li, Bin Zhang, Haizhu Li. Design and Analysis of Metasurface Terahertz Dual-Band Linear Polarization Converter[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1930002 Copy Citation Text show less
    References

    [1] Hossain Z, Mollica C N, Federici J F et al. Stochastic interference modeling and experimental validation for pulse-based terahertz communication[J]. IEEE Transactions on Wireless Communications, 18, 4103-4115(2019).

    [2] Xu D G, Wang Y Y, Hu C H et al. Optical terahertz radiation sources and terahertz application in traumatic brain injury[J]. Chinese Journal of Lasers, 48, 1914002(2021).

    [3] Zhang S J, Li Z W, Xing F. Review of polarization optical devices based on graphene materials[J]. International Journal of Molecular Sciences, 21, 1608(2020).

    [4] Keiser G R, Karl N, Liu P Q et al. Nonlinear terahertz metamaterials with active electrical control[J]. Applied Physics Letters, 111, 121101(2017).

    [5] Hashemi M R, Cakmakyapan S, Jarrahi M. Reconfigurable metamaterials for terahertz wave manipulation[J]. Reports on Progress in Physics, 80, 094501(2017).

    [6] Wen X W, Zheng J R. Broadband THz reflective polarization rotator by multiple plasmon resonances[J]. Optics Express, 22, 28292-28300(2014).

    [7] Pan W, Shen D J, Yan Y J. Design of broadband polarization converter for terahertz waves[J]. Optoelectronics Letters, 14, 434-437(2018).

    [8] Su H E, Lan F, Yang Z Q et al. Terahertz multi-band reflective polarization converter based on TSRR metamaterial[C], 206-209(2017).

    [9] Bilal R M H, Baqir M A, Choudhury P K et al. On the specially designed fractal metasurface-based dual-polarization converter in the THz regime[J]. Results in Physics, 19, 103358(2020).

    [10] Nghia C, Nguyen M T, Nguyen N H et al. Numerical design of a high efficiency and ultra-broadband terahertz cross-polarization converter[J]. Materials Research Express, 8, 065801(2021).

    [11] Jing X F, Gui X C, Zhou P W et al. Physical explanation of Fabry-Pérot cavity for broadband bilayer metamaterials polarization converter[J]. Journal of Lightwave Technology, 36, 2322-2327(2018).

    [12] Kamal B, Chen J D, Yin Y Z et al. Design and experimental analysis of dual-band polarization converting metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 20, 1409-1413(2021).

    [13] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).

    [14] Huang X J, Xiao B X, Yang D et al. Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial[J]. Optics Communications, 338, 416-421(2015).

    [15] Gao X, Han X, Cao W P et al. Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface[J]. IEEE Transactions on Antennas and Propagation, 63, 3522-3530(2015).

    Wu Pan, Yongrui Li, Bin Zhang, Haizhu Li. Design and Analysis of Metasurface Terahertz Dual-Band Linear Polarization Converter[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1930002
    Download Citation