[1] Wang C, Duan X D and Duan X F 2017 Graphene electronics 2D Materials: Properties and Devices ed P Avouris, T Low and T F Heinz (Cambridge University Press) pp 159–79
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9
[3] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Atomically thin MoS2: a new direct-gap semiconductor Phys. Rev. Lett. 105 136805
[4] ChenY, LaiZC,ZhangX,Fan ZX,HeQY, Tan CLand Zhang H 2020 Phase engineering of nanomaterials Nat. Rev. Chem. 4 243–56
[5] HuZ,Wu Z,HanC,HeJ,NiZandChenW2018 Two-dimensional transition metal dichalcogenides: interface and defect engineering Chem. Soc. Rev. 47 3100–28
[6] LiSY, MaY, OuedraogoNAN,LiuFM,You CY, Deng W J and Zhang Y Z 2022 p-/n-type modulation of 2D transition metal dichalcogenides for electronic and optoelectronic devices Nano Res. 15 123–44
[7] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y and Ren T-L 2022 Vertical MoS2 transistors with sub-1-nm gate lengths Nature 603 259–64
[8] QiY et al 2016 Superconductivity in weyl semimetal candidate MoTe2 Nat. Commun. 7 11038
[9] Xiao D, Liu G-B, Feng W, Xu X and Yao W 2012 Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides Phys. Rev. Lett. 108 196802
[10] Liu Y, Liu S, Li B, Yoo W J and Hone J 2022 Identifying the transition order in an artificial ferroelectric van der Waals heterostructure Nano Lett. 22 1265–9
[11] Cai L et al 2015 Vacancy-induced ferromagnetism of MoS2 nanosheets J. Am. Chem. Soc. 137 2622–7
[12] Zhang S M et al 2022 Lateral layered semiconductor multijunctions for novel electronic devices Chem. Soc. Rev. 51 4000–22
[13] Pham P V, Bodepudi S C, Shehzad K, Liu Y, Xu Y, Yu B and Duan X 2022 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges Chem. Rev. 122 6514–613
[14] Shanks D N, Mahdikhanysarvejahany F, Stanfill T G, Koehler M R, Mandrus D G, Taniguchi T, Watanabe K, LeRoy B J and Schaibley J R 2022 Interlayer exciton diode and transistor Nano Lett. 22 6599–605
[15] Nakamura K, Nagamura N, Ueno K, Taniguchi T, Watanabe K and Nagashio K 2020 All 2D heterostructure tunnel field-effect transistors: impact of band alignment and heterointerface quality ACS Appl. Mater. Interfaces 12 51598–606
[16] Zhou J D et al 2018 A library of atomically thin metal chalcogenides Nature 556 355–9
[17] Habib M R, Wang S, Wang W, Xiao H, Obaidulla S M, Gayen A, Khan Y, Chen H and Xu M 2019 Electronic properties of polymorphic two-dimensional layered chromium disulphide Nanoscale 11 20123–32
[18] Li B et al 2021 Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order Nat. Mater. 20 818–25
[19] SunXD et al 2020 Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2 Nano Res. 13 3358–63
[20] O’Hara D J et al 2018 Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit Nano Lett. 18 3125–31
[21] Zhao Y, Cong H, Li P, Wu D, Chen S and Luo W 2021 Hexagonal RuSe2 nanosheets for highly efficient hydrogen evolution electrocatalysis Angew. Chem., Int. Ed. 60 7013–7
[22] Li J et al 2020 General synthesis of two-dimensional van der Waals heterostructure arrays Nature 579 368–74
[23] PiLJ,LiL,LiuKL,ZhangQF, LiHQandZhaiTY 2019 Recent progress on 2D noble-transition-metal dichalcogenides Adv. Funct. Mater. 29 1904932
[24] ZhouX,HuXZ,ZhouSS,ZhangQ,LiHQandZhaiTY 2017 Ultrathin 2D GeSe2 rhombic flakes with high anisotropy realized by van der Waals epitaxy Adv. Funct. Mater. 27 1703858
[25] Yan H-J, Li Z B, Liu S-C, Wang X, Zhang X, Xue D-J and Hu J-S 2022 Investigation of weak interlayer coupling in 2D layered GeS2 from theory to experiment Nano Res. 15 1013–9
[26] OuJZ et al 2015 Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing ACS Nano 9 10313–23
[27] Yan R et al 2015 Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment Nano Lett. 15 5791–8
[28] Wang X G et al 2021 Ultrathin FeTe nanosheets with tetragonal and hexagonal phases synthesized by chemical vapor deposition Mater. Today 45 35–43
[29] Liu H and Xue Y 2021 Van der Waals epitaxial growth and phase transition of layered FeSe2 nanocrystals Adv. Mater. 33 2008456
[30] Purwitasari W, Villaos R A B, Verzola I M R, Sufyan A, Huang Z-Q, Hsu C-H and Chuang F-C 2022 High thermoelectric performance in 2D technetium dichalcogenides TcX2 (X = S, Se, or Te) ACS Appl. Energy Mater. 5 8650–7
[31] Maiti P S, Ghosh S, Leitus G, Houben L and Bar Sadan M 2021 Oriented attachment of 2D nanosheets: the case of few-layer Bi2Se3 Chem. Mater. 33 7558–65
[32] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 2D transition metal dichalcogenides Nat. Rev. Mater. 2 17033
[33] Nourbakhsh A et al 2016 MoS2 field-effect transistor with sub-10 nm channel length Nano Lett. 16 7798–806
[34] Yang D Y et al 2022 Spontaneous-polarization-induced photovoltaic effect in rhombohedrally stacked MoS2 Nat. Photon. 16 469–74
[35] He J G, Hummer K and Franchini C 2014 Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2 Phys. Rev. B 89 075409
[36] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Type-II weyl semimetals Nature 527 495–8
[37] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Phase-engineered low-resistance contacts for ultrathin MoS2 transistors Nat. Mater. 13 1128–34
[38] Cho S et al 2015 Phase patterning for ohmic homojunction contact in MoTe2 Science 349 625–8
[39] Lin Y-C, Dumcenco D O, Huang Y-S and Suenaga K 2014 Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2 Nat. Nanotechnol. 9 391–6
[40] ZhuJQ et al 2017 Argon plasma induced phase transition in monolayer MoS2 J. Am. Chem. Soc. 139 10216–9
[41] Li Y et al 2021 Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution Nano Energy 84 105898
[42] Acerce M, Voiry D and Chhowalla M 2015 Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials Nat. Nanotechnol. 10 313–8
[43] He Q, Lin Z, Ding M, Yin A, Halim U, Wang C, Liu Y, Cheng H-C, Huang Y and Duan X 2019 In situ probing molecular intercalation in two-dimensional layered semiconductors Nano Lett. 19 6819–26
[44] Liu L et al 2018 Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers Nat. Mater. 17 1108–14
[45] Komsa H-P and Krasheninnikov A V 2015 Native defects in bulk and monolayer MoS2 from first principles Phys. Rev. B 91 125304
[46] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J-C 2013 Intrinsic structural defects in monolayer molybdenum disulfide Nano Lett. 13 2615–22
[47] Wu K,LiZ,TangJB,LvXL,WangHL,LuoRC,LiuP, Qian L H, Zhang S P and Yuan S L 2018 Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement Nano Res. 11 4123–32
[48] Jeong H Y, Jin Y, Yun S J, Zhao J, Baik J, Keum D H, Lee H S and Lee Y H 2017 Heterogeneous defect domains in single-crystalline hexagonal WS2 Adv. Mater. 29 1605043
[49] Bertoldo F et al 2021 Intrinsic defects in MoS2 grown by pulsed laser deposition: from monolayers to bilayers ACS Nano 15 2858–68
[50] Schuler B et al 2019 Large spin-orbit splitting of deep in-gap defect states of engineered sulfur vacancies in monolayer WS2 Phys. Rev. Lett. 123 076801
[51] LuoN,ChenC,YangDM,HuWYandDongFQ2021S defect-rich ultrathin 2D MoS2: the role of S point-defects and S stripping-defects in the removal of Cr(VI) via synergistic adsorption and photocatalysis Appl. Catal. B: Environ. 299 120664
[52] Komsa H-P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2012 Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping Phys. Rev. Lett. 109 035503
[53] Seo S-Y, Park J, Park J, Song K, Cha S, Sim S, Choi S-Y, Yeom H W, Choi H and Jo M-H 2018 Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe Nat. Electron. 1 512–7
[54] Kim J, Park H, Yoo S, Im Y-H, Kang K and Kim J 2021 Defect-engineered n-doping of WSe2 via argon plasma treatment and its application in field-effect transistors Adv. Mater. Interfaces 8 2100718
[55] Gao L et al 2020 Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters Adv. Mater. 32 e1906646
[56] Tsai C, Li H, Park S, Park J, Han H S, Norskov J K, Zheng X and Abild-Pedersen F 2017 Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution Nat. Commun. 8 15113
[57] McDonnell S, Addou R, Buie C, Wallace R M and Hinkle C L 2014 Defect-dominated doping and contact resistance in MoS2 ACS Nano 8 2880–8
[58] Sim D M, Kim M, Yim S, Choi M-J, Choi J, Yoo S and Jung Y S 2015 Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption ACS Nano 9 12115–23
[59] Donarelli M, Prezioso S, Perrozzi F, Bisti F, Nardone M, Giancaterini L, Cantalini C and Ottaviano L 2015 Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors Sens. Actuators B 207 602–13
[60] Yin Y et al 2016 Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets J. Am. Chem. Soc. 138 7965–72
[61] Peto J, Ollar T, Vancso P, Popov Z I, Magda G Z, Dobrik G, Hwang C, Sorokin P B and Tapaszto L 2018 Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions Nat. Chem. 10 1246–51
[62] Zuo Y et al 2022 Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply Nat. Commun. 13 1007
[63] Zhang X et al 2017 Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode Nat. Commun. 8 15881
[64] Tanoh A O A et al 2019 Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands Nano Lett. 19 6299–307
[65] Yun WS,HanSW, HongSC,KimIGandLeeJD2012 Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te) Phys. Rev. B 85 033305
[66] Tran V, Soklaski R, Liang Y and Yang L 2014 Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus Phys. Rev. B 89 235319
[67] Zhang Y et al 2014 Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 Nat. Nanotechnol. 9 111–5
[68] Xia C, Xiong W, Du J, Wang T, Peng Y, Wei Z, Li J and Jia Y 2018 Type-I transition metal dichalcogenides lateral homojunctions: layer thickness and external electric field effects Small 14 e1800365
[69] Liu Y, Nan H, Wu X, Pan W, Wang W, Bai J, Zhao W, Sun L, Wang X and Ni Z 2013 Layer-by-layer thinning of MoS2 by plasma ACS Nano 7 4202–9
[70] KimKS et al 2019 Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction Nat. Commun. 10 4701
[71] Zhou X L et al 2021 Patterning of transition metal dichalcogenides catalyzed by surface plasmons with atomic precision Chem 7 1626–38
[72] Lee D, Choi Y, Kim J and Kim J 2022 Recessed-channel WSe2 field-effect transistor via self-terminated doping and layer-by-layer etching ACS Nano 16 8484–92
[73] Wang C et al 2018 Monolayer atomic crystal molecular superlattices Nature 555 231–6
[74] Huang Y, Liang J, Wang C, Yin S, Fu W, Zhu H and Wan C 2020 Hybrid superlattices of two-dimensional materials and organics Chem. Soc. Rev. 49 6866–83
[75] Liu L et al 2022 Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire Nature 605 69–75
[76] Wang Z et al 2021 Controllable doping in 2D layered materials Adv. Mater. 33 2104942
[77] Conley H J, Wang B, Ziegler J I, Haglund R F Jr, Pantelides S T and Bolotin K I 2013 Bandgap engineering of strained monolayer and bilayer MoS2 Nano Lett. 13 3626–30
[78] Blundo E, Felici M, Yildirim T, Pettinari G, Tedeschi D, Miriametro A, Liu B, Ma W, Lu Y and Polimeni A 2020 Evidence of the direct-to-indirect band gap transition in strained two-dimensional WS2, MoS2, and WSe2 Phys. Rev. Res. 2 012024(R)
[79] Li Z et al 2020 Efficient strain modulation of 2D materials via polymer encapsulation Nat. Commun. 11 1151
[80] Zhang C, Li M-Y, Tersoff J, Han Y, Su Y, Li L-J, Muller D A and Shih C-K 2018 Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions Nat. Nanotechnol. 13 152–8
[81] LeeJ,Yun SJ,SeoC,ChoK,KimTS,AnGH,KangK, Lee H S and Kim J 2021 Switchable, tunable, and directable exciton funneling in periodically wrinkled WS2 Nano Lett. 21 43–50
[82] Kozhakhmetov A et al 2021 Controllable p-type doping of 2D WSe2 via vanadium substitution Adv. Funct. Mater. 31 2105252
[83] Li S et al 2021 Tunable doping of rhenium and vanadium into transition metal dichalcogenides for two-dimensional electronics Adv. Sci. 8 e2004438
[84] Suh J et al 2014 Doping against the native propensity of MoS2: degenerate hole doping by cation substitution Nano Lett. 14 6976–82
[85] Suh J et al 2018 Reconfiguring crystal and electronic structures of MoS2 by substitutional doping Nat. Commun. 9 199
[86] Tang L et al 2021 Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb-doping Adv. Funct. Mater. 31 2006941
[87] Cai Z et al 2020 Dual-additive assisted chemical vapor deposition for the growth of Mn-doped 2D MoS2 with tunable electronic properties Small 16 e1903181
[88] Urbanova V, Antonatos N, Plutnar J, Lazar P, Michalicka J, Otyepka M, Sofer Z and Pumera M 2021 Rhenium doping of layered transition-metal diselenides triggers enhancement of photoelectrochemical activity ACS Nano 15 2374–85
[89] Li H, Cheng M, Wang P, Du R, Song L, He J and Shi J 2022 Reducing contact resistance and boosting device performance of monolayer MoS2 by in situ Fe doping Adv. Mater. 34 e2200885
[90] Sun Q-Q, Li Y-J, He J-L, Yang W, Zhou P, Lu H-L, Ding S-J and Zhang D W 2013 The physics and backward diode behavior of heavily doped single layer MoS2 based p-n junctions Appl. Phys. Lett. 102 093104
[91] Zhang F et al 2019 Carbon doping of WS2 monolayers: bandgap reduction and p-type doping transport Sci. Adv. 5 eaav5003
[92] Nipane A, Karmakar D, Kaushik N, Karande S and Lodha S 2016 Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation ACS Nano 10 2128–37
[93] Li Z, Li D, Wang H, Xu X, Pi L, Chen P, Zhai T and Zhou X 2022 Universal p-type doping via Lewis acid for 2D transition-metal dichalcogenides ACS Nano 16 4884–91
[94] Kim J et al 2021 Wafer-scale production of transition metal dichalcogenides and alloy monolayers by nanocrystal conversion for large-scale ultrathin flexible electronics Nano Lett. 21 9153–63
[95] Duan X et al 2016 Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties Nano Lett. 16 264–9
[96] AnBX,MaY, ChuFH,LiXH,Wu Y, You CY, DengWJ, Li S Y and Zhang Y Z 2022 Growth of centimeter scale Nb1.xWxSe2 monolayer film by promoter assisted liquid phase chemical vapor deposition Nano Res. 15 2608–15
[97] Radisavljevic B and Kis A 2013 Mobility engineering and a metal-insulator transition in monolayer MoS2 Nat. Mater. 12 815–20
[98] Li D, Chen M, Sun Z, Yu P, Liu Z, Ajayan P M and Zhang Z 2017 Two-dimensional non-volatile programmable p-n junctions Nat. Nanotechnol. 12 901–6
[99] Wu E, Xie Y, Zhang J, Zhang H, Hu X, Liu J, Zhou C and Zhang D 2019 Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation Sci. Adv. 5 eaav3430
[100] Wu GJ et al 2020 Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains Nat. Electron. 3 43–50
[101] Utama M et al 2019 A dielectric-defined lateral heterojunction in a monolayer semiconductor Nat. Electron. 2 60–65
[102] Chiang C-C, Lan H-Y, Pang C-S, Appenzeller J and Chen Z H 2022 Air-stable p-doping in record high-performance monolayer WSe2 devices IEEE Electron Device Lett. 43 319–22
[103] Fang H, Tosun M, Seol G, Chang T C, Takei K, Guo J and Javey A 2013 Degenerate n-doping of few-layer transition metal dichalcogenides by potassium Nano Lett. 13 1991–5
[104] Nassiri Nazif K et al 2021 High-performance p-n junction transition metal dichalcogenide photovoltaic cells enabled by MoOx doping and passivation Nano Lett. 21 3443–50
[105] Borah A, Nipane A, Choi M S, Hone J and Teherani J T 2021 Low-resistance p-type ohmic contacts to ultrathin WSe2 by using a monolayer dopant ACS Appl. Electron. Mater. 3 2941–7
[106] Kiriya D, Tosun M, Zhao P, Kang J S and Javey A 2014 Air-stable surface charge transfer doping of MoS2 by benzyl viologen J. Am. Chem. Soc. 136 7853–6
[107] Lee E K, Abdullah H, Torricelli F, Lee D H, Ko J K, Kim H H, Yoo H and Oh J H 2021 Boosting the optoelectronic properties of molybdenum diselenide by combining phase transition engineering with organic cationic dye doping ACS Nano 15 17769–79
[108] Wang C, Huang Y and Duan X F 2017 Enhanced electrical characteristics of black phosphorus by polyaniline and protonic acid surface doping Proc. IEEE 17th Int. Conf. on Nanotechnology (IEEE-NANO) (IEEE) pp 453–5
[109] Pei S H, Wang Z H and Xia J 2022 Interlayer coupling: an additional degree of freedom in two-dimensional materials ACS Nano 16 11498–503
[110] Li Y, Qin J-K, Xu C-Y, Cao J, Sun Z-Y, Ma L-P, Hu P A, Ren W C and Zhen L 2016 Electric field tunable interlayer relaxation process and interlayer coupling in WSe2/graphene heterostructures Adv. Funct. Mater. 26 4319–28
[111] Pei S H, Wang Z H and Xia J 2022 High pressure studies of 2D materials and heterostructures: a review Mater. Des. 213 110363
[112] Zhong W, Zhao Y, Zhu B B, Sha J J, Walker E S, Bank S, Chen Y F, Akinwande D and Tao L 2020 Anisotropic thermoelectric effect and field-effect devices in epitaxial bismuthene on Si (111) Nanotechnology 31 475202
[113] ZhouWH,ChenJY, BaiPX,GuoSY, ZhangSL, Song X F, Tao L and Zeng H B 2019 Two-dimensional pnictogen for field-effect transistors Research 2019 1046329
[114] Xu B et al 2023 Identifying, resolving, and quantifying anisotropy in ReS2 nanomechanical resonators Small 19 2300631
[115] Wen T, LiJ,ZhangMD,JiaoCY, PeiSH,WangZHand Xia J 2022 Discerning the vibrational nature of ReS2 Raman modes using solid-angle-resolved Raman spectroscopy ACS Photonics 9 3557–62
[116] Wen T, ZhangMD,LiJ,JiaoCY, PeiSH,WangZHand Xia J 2023 Orientation–polarization dependence of pressure-induced Raman anomalies in anisotropic 2D ReS2 Nanoscale Horiz. 8 516–21
[117] Wen T, Li J, Deng Q Y, Jiao C Y, Zhang M D, Wu S, Lin L, Huang W, Xia J and Wang Z H 2022 Analyzing anisotropy in 2D rhenium disulfide using dichromatic polarized reflectance Small 18 2108028
[118] Lin Z et al 2018 Solution-processable 2D semiconductors for high-performance large-area electronics Nature 562 254–8
[119] Coleman J N et al 2011 Two-dimensional nanosheets produced by liquid exfoliation of layered materials Science 331 568–71
[120] Masubuchi S, Morimoto M, Morikawa S, Onodera M, Asakawa Y, Watanabe K, Taniguchi T and Machida T 2018 Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices Nat. Commun. 9 1413
[121] Sahoo P K, Memaran S, Xin Y, Balicas L and Gutiérrez H R 2018 One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy Nature 553 63–67
[122] Chen W et al 2015 Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2 J. Am. Chem. Soc. 137 15632–5
[123] Zhou H L et al 2015 Large area growth and electrical properties of p-type WSe2 atomic layers Nano Lett. 15 709–13
[124] Zhou X, Gan L, Tian W, Zhang Q, Jin S, Li H, Bando Y, Golberg D and Zhai T 2015 Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors Adv. Mater. 27 8035–41
[125] Kim M, Seo J, Kim J, Moon J S, Lee J, Kim J-H, Kang J and Park H 2021 High-crystalline monolayer transition metal dichalcogenides films for wafer-scale electronics ACS Nano 15 3038–46
[126] Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C-J, Muller D and Park J 2015 High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity Nature 520 656–60
[127] Yu H et al 2017 Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films ACS Nano 11 12001–7
[128] LiTT et al 2021 Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire Nat. Nanotechnol. 16 1201–7
[129] Ji Q et al 2013 Epitaxial monolayer MoS2 on mica with novel photoluminescence Nano Lett. 13 3870–7
[130] MaKY et al 2022 Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111) Nature 606 88–93
[131] Shi Y et al 2012 Van der Waals epitaxy of MoS2 layers using graphene as growth templates Nano Lett. 12 2784–91
[132] Huet B, Bachu S, Alem N, Snyder D W and Redwing J M 2023 MOCVD of WSe2 crystals on highly crystalline single-and multi-layer CVD graphene Carbon 202 150–60
[133] Shi J et al 2016 Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications Adv. Mater. 28 10664–72
[134] Gong Y J et al 2017 Direct growth of MoS2 single crystals on polyimide substrates 2D Mater. 4 021028
[135] Kim K S et al 2023 Non-epitaxial single-crystal 2D material growth by geometric confinement Nature 614 88–94
[136] Yang H et al 2021 Wafer-scale synthesis of WS2 films with in situ controllable p-type doping by atomic layer deposition Research 2021 9862483
[137] Xia Y P et al 2023 Wafer-scale single-crystalline MoSe2 and WSe2 monolayers grown by molecular-beam epitaxy at low-temperature—the role of island-substrate interaction and surface steps Nat. Sci. 3 20220059
[138] Duan X D et al 2014 Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions Nat. Nanotechnol. 9 1024–30
[139] Chen T, Hao G, Kou L, Wang C and Zhong J 2018 Controllable epitaxial growth of MoSe2-MoS2 lateral heterostructures with tunable electrostatic properties Nanotechnology 29 484003
[140] Zubair A, Nourbakhsh A, Hong J-Y, Qi M, Song Y, Jena D, Kong J, Dresselhaus M and Palacios T 2017 Hot electron transistor with van der Waals base-collector heterojunction and high-performance GaN emitter Nano Lett. 17 3089–96
[141] YipPS,ZouXB,ChoWC,Wu KLandLauKM2017 Transistors and tunnel diodes enabled by large-scale MoS2 nanosheets grown on GaN Semicond. Sci. Technol. 32 075011
[142] Shim J et al 2016 Extremely large gate modulation in vertical graphene/WSe2 heterojunction barristor based on a novel transport mechanism Adv. Mater. 28 5293–9
[143] WangZH,XuB,PeiSH,ZhuJK,Wen T, JiaoC,LiJ, Zhang M D and Xia J 2022 Recent progress in 2D van der Waals heterostructures: fabrication, properties, and applications Sci. China Inf. Sci. 65 211401
[144] Chen Y Q et al 2021 Large-area freestanding Weyl semimetal WTe2 membranes Chin. Phys. Lett. 38 017101
[145] Liao M et al 2020 Precise control of the interlayer twist angle in large scale MoS2 homostructures Nat. Commun. 11 2153
[146] Lin Y C et al 2015 Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures Nat. Commun. 6 7311
[147] Vu VT, Vu TTH,PhanTL,KangWT, KimYR, Tran M D, NguyenHT T, Lee Y H and Yu W J 2021 One-step synthesis of NbSe2/Nb-doped-WSe2 metal/doped-semiconductor van der Waals heterostructures for doping controlled ohmic contact ACS Nano 15 13031–40
[148] FuQD et al 2018 One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2 Chem. Mater. 30 4001–7
[149] Nugera F A, Sahoo P K, Xin Y, Ambardar S, Voronine D V, Kim U J, Han Y, Son H and Gutierrez H R 2022 Bandgap engineering in 2D lateral heterostructures of transition metal dichalcogenides via controlled alloying Small 18 e2106600
[150] Seok H et al 2021 Low-temperature synthesis of wafer-scale MoS2-WS2 vertical heterostructures by single-step penetrative plasma sulfurization ACS Nano 15 707–18
[151] Yang A et al 2019 Giant enhancement of photoluminescence emission in WS2-two-dimensional perovskite heterostructures Nano Lett. 19 4852–60
[152] Jin J, Xiao T, Zhang Y-F, Zheng H, Wang H W, Wang R, Gong Y S, He B B,LiuX H and Zhou K 2021 Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion Nanoscale 13 19740–70
[153] Park H, Shin G H, Lee K J and Choi S-Y 2020 Probing temperature-dependent interlayer coupling in a MoS2/h-BN heterostructure Nano Res. 13 576–82
[154] Radisavljevic B, Whitwick M B and Kis A 2011 Integrated circuits and logic operations based on single-layer MoS2 ACS Nano 5 9934–8
[155] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS2 transistors Nat. Nanotechnol. 6 147–50
[156] Wang B et al 2021 Monolayer MoS2 synaptic transistors for high-temperature neuromorphic applications Nano Lett. 21 10400–8
[157] Qin W J, Lv Y W, Xia Z, Liao L and Jiang C Z 2022 Van der Waals heterostructure tunnel FET with potential modulation beyond junction region Sci. China Inf. Sci. 65 209401
[158] Zhang X et al 2021 Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions Nat. Commun. 12 1522
[159] Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X and Ye P D 2014 Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode ACS Nano 8 8292–9
[160] Fan S,Vu QA,LeeS,PhanTL,HanG,KimY-M,Yu WJ and Lee Y H 2019 Tunable negative differential resistance in van der waals heterostructures at room temperature by tailoring the interface ACS Nano 13 8193–201
[161] Shim J et al 2016 Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic Nat. Commun. 7 13413
[162] Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y and Duan X 2014 Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes Nano Lett. 14 5590–7
[163] AnXH,ZhangYH,Yu YF, ZhaoWW, YangYT, Niu X H,Luo X, Lu J P, WangJ L and Ni Z H 2022 Efficient charge transfer in WS2/WxMo1.xS2 heterostructure empowered by energy level hybridization Sci. China Inf. Sci. 66 122404
[164] Svatek S A et al 2021 High open-circuit voltage in transition metal dichalcogenide solar cells Nano Energy 79 105427
[165] Nassiri Nazif K et al 2021 High-specific-power flexible transition metal dichalcogenide solar cells Nat. Commun. 12 7034
[166] Zhu W K et al 2022 Large room-temperature magnetoresistance in van der Waals ferromagnet/semiconductor junctions Chin. Phys. Lett. 39 128501
[167] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Unconventional superconductivity in magic-angle graphene superlattices Nature 556 43–50
[168] Shen S W et al 2022 Coexistence of quasi-two-dimensional superconductivity and tunable kondo lattice in a van der Waals superconductor Chin. Phys. Lett. 39 077401
[169] Xu B et al 2022 Nanomechanical resonators: toward atomic scale ACS Nano 16 15545–85
[170] Zhu J K et al 2022 Frequency scaling, elastic transition, and broad-range frequency tuning in WSe2 nanomechanical resonators Nano Lett. 22 5107–13
[171] Mannix A J, Kiraly B, Hersam M C and Guisinger N P 2017 Synthesis and chemistry of elemental 2D materials Nat. Rev. Chem. 1 0014
[172] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D and Ye P D 2014 Phosphorene: an unexplored 2D semiconductor with a high hole mobility ACS Nano 8 4033–41
[173] Hanlon D et al 2015 Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics Nat. Commun. 6 8563
[174] Smith J B, Hagaman D and Ji H-F 2016 Growth of 2D black phosphorus film from chemical vapor deposition Nanotechnology 27 215602
[175] LiXS et al 2015 Synthesis of thin-film black phosphorus on a flexible substrate 2D Mater. 2 031002
[176] Zhao G, Wang T L, Shao Y L, Wu Y Z, Huang B B and Hao X P 2017 A novel mild phase-transition to prepare black phosphorus nanosheets with excellent energy applications Small 13 1602243
[177] Zhang J L et al 2016 Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus Nano Lett. 16 4903–8
[178] Wu Z H, Lyu Y X, Zhang Y, Ding R, Zheng B N, Yang Z B, Lau S P, Chen X H and Hao J H 2021 Large-scale growth of few-layer two-dimensional black phosphorus Nat. Mater. 20 1203–9
[179] Han R Y, Feng S, Sun D-M and Cheng H-M 2021 Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus Sci. China Inf. Sci. 64 140402
[180] Liu Y et al 2017 Highly efficient and air-stable infrared photodetector based on 2D layered graphene–black phosphorus heterostructure ACS Appl. Mater. Interfaces 9 36137–45
[181] Sinha S, Takabayashi Y, Shinohara H and Kitaura R 2016 Simple fabrication of air-stable black phosphorus heterostructures with large-area hBN sheets grown by chemical vapor deposition method 2D Mater. 3 035010
[182] Zeng J, Xu L, Dong K J, Yang K and Wang L-L 2021 Multiple heterojunction system of boron nitride-graphene/black phosphorene as highly efficient solar cell Adv. Theor. Simul. 4 2100169
[183] Sultana N, Degg A, Upadhyaya S, Nilges T and Sen Sarma N 2022 Synthesis, modification, and application of black phosphorus, few-layer black phosphorus (FLBP), and phosphorene: a detailed review Mater. Adv. 3 5557–74
[184] LiLK,Yu YJ,Ye GJ,GeQQ,OuXD,Wu H,FengDL, Chen X H and Zhang Y B 2014 Black phosphorus field-effect transistors Nat. Nanotechnol. 9 372–7
[185] LiuX,WangWH,YangF, FengSP, HuZL,LuJPand Ni Z H 2021 Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector Sci. China Inf. Sci. 64 140404
[186] Zhu W, Yogeesh M N, Yang S, Aldave S H, Kim J-S, Sonde S, Tao L, Lu N and Akinwande D 2015 Flexible black phosphorus ambipolar transistors, circuits and AM demodulator Nano Lett. 15 1883–90
[187] Kasap S O and Capper P 2006 Springer Handbook of Electronic and Photonic Materials (Springer)
[188] Uchida K, Watanabe H, Kinoshita A, Koga J, Numata T and Takagi S 2002 Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm Int. Electron Devices Meeting Digest (IEEE) pp 47–50
[189] Wei L, Miao Y, Ding Y F, Li C, Lu H and Chen Y-F 2020 Ultra high hole mobility in Ge films grown directly on Si (100) through interface modulation J. Cryst. Growth 548 125838
[190] Yu X, Kang J, Takenaka M and Takagi S 2015. Experimental study on carrier transport properties in extremely-thin body Ge-on-insulator (GOI) p-MOSFETs with GOI thickness down to 2 nm Proc. 2015 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 2.2.1–4
[191] Nakwaski W 1995 Effective masses of electrons and heavy holes in GaAs, InAs, AlAs and their ternary compounds Physica B 210 1–25
[192] Sakai S, Soga T and Umeno M 1986 Band-gap energy and stress of GaAs grown on Si by MOCVD Jpn. J. Appl. Phys. 25 1680–3
[193] Lovejoy M L, Melloch M R and Lundstrom M S 1995 Temperature dependence of minority and majority carrier mobilities in degenerately doped GaAs Appl. Phys. Lett. 67 1101–3
[194] Nag B R and Dutta G M 1978 Electron mobility in InP J. Phys. C: Solid State Phys. 11 119–23
[195] Podor B 2008 Hole mobility in InP and GaSb Proc. 31st Int. Spring Seminar on Electronics Technology (IEEE) pp 201–4
[196] Bennett B R, Tinkham B P, Boos J B, Lange M D and Tsai R 2004 Materials growth for InAs high electron mobility transistors and circuits J. Vac. Sci. Technol. B 22 688–94
[197] Yano M, Nogami M, Matsushima Y and Kimata M 1977 Molecular beam epitaxial growth of InAs Jpn. J. Appl. Phys. 16 2131–7
[198] Kaplar R J, Allerman A A, Armstrong A M, Crawford M H, Dickerson J R, Fischer A J, Baca A G and Douglas E A 2017 Review-ultra-wide-bandgap algan power electronic devices ECS J. Solid State Sci. Technol. 6 Q3061
[199] Chen C C et al 2022 Hole mobility behavior in Al-gradient polarization-induced p-type AlGaN grown on GaN template Appl. Phys. Lett. 120 022103
[200] Poncé S, Jena D and Giustino F 2019 Hole mobility of strained GaN from first principles Phys. Rev. B 100 085204
[201] Persson C, Sernelius B E, da Silva A F, Ahuja R and Johansson B 2001 Effective electron and hole masses in intrinsic and heavily n-type doped GaN and AlN J. Phys.: Condens. Matter 13 8915–22
[202] Taniyasu Y, Kasu M and Makimoto T 2006 Increased electron mobility in n-type Si-doped AlN by reducing dislocation density Appl. Phys. Lett. 89 182112
[203] Tran NH,LeBH,ZhaoSRandMiZT2017On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures Appl. Phys. Lett. 110 032102
[204] WangJX,SunDZ,WangXL,LiJM,ZengYP, HouXand Lin L Y 2001 High-quality GaN grown by gas-source MBE J. Cryst. Growth 227 386–9
[205] Wu YZ,TongJW, RuanLX,LuoFF, LiuGH,ZhangR, HanX L,Zhang Y L, Tian F B and ZhangX M 2021 N-type diamond semiconductor induced by co-doping selenium and boron Comput. Mater. Sci. 196 110515
[206] Vavilov V S and Konorova E A 1976 Semiconducting diamonds Sov. Phys.—Usp. 19 301–16
[207] He H Y, Blanco M A and Pandey R 2006 Electronic and thermodynamic properties of β-Ga2O3 Appl. Phys. Lett. 88 261904
[208] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates Appl. Phys. Lett. 100 013504
[209] Iwata K, Fons P, Niki S, Yamada A, Matsubara K, Nakahara K and Takasu H 2000 Improvement of electrical properties in ZnO thin films grown by radical source(RS)-MBE Phys. Status Solidi a 180 287–92
[210] Srivastava S and Mohapatra Y N 2021 MoS2|ZnO isotype heterostructure diode: carrier transport and band alignment J. Appl. Phys. 129 205702
[211] Li Y, Yang S X and Li J B 2014 Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field J. Phys. Chem. C 118 23970–6
[212] Ribeiro H B, Pimenta M A and de Matos C J S 2018 Raman spectroscopy in black phosphorus J. Raman Spectrosc. 49 76–90
[213] Li X, Yu Z, Xiong X, Li T, Gao T, Wang R, Huang R and Wu Y 2019 High-speed black phosphorus field-effect transistors approaching ballistic limit Sci. Adv. 5 eaau3194
[214] Tao J et al 2015 Mechanical and electrical anisotropy of few-layer black phosphorus ACS Nano 9 11362–70
[215] Rudenko A N, Brener S and Katsnelson M I 2016 Intrinsic charge carrier mobility in single-layer black phosphorus Phys. Rev. Lett. 116 246401
[216] Sun Y H, Wang X J, Zhao X-G, Shi Z M and Zhang L J 2018 First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides J. Semiconduct. 39 072001
[217] Kim B S, Rhim J-W, Kim B, Kim C and Park S R 2016 Determination of the band parameters of bulk 2H-MX2 (M = Mo,W; X = S,Se) by angle-resolved photoemission spectroscopy Sci. Rep. 6 36389
[218] Kumar A and Ahluwalia P K 2012 Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo,W; X = S,Se, Te) from ab-initio theory: new direct band gap semiconductors Eur. Phys. J. B 85 186
[219] Kuc A, Zibouche N and Heine T 2011 Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 Phys. Rev. B 83 245213
[220] Zhao J, Li N, Yu H, Wei Z, Liao M, Chen P, Wang S, Shi D, Sun Q and Zhang G 2017 Highly sensitive MoS2 humidity sensors array for noncontact sensation Adv. Mater. 29 1702076
[221] Dagan R, Vaknin Y, Henning A, Shang J Y, Lauhon L J and Rosenwaks Y 2019 Two-dimensional charge carrier distribution in MoS2 monolayer and multilayers Appl. Phys. Lett. 114 101602
[222] Liu L T, Kumar S B, Ouyang Y and Guo J 2011 Performance limits of monolayer transition metal dichalcogenide transistors IEEE Trans. Electron Devices 58 3042–7
[223] RenP, BaileyTP, PageAA,YangQX,LvTandXuGY 2021 Fine-grained polycrystalline MoTe2 with enhanced thermoelectric properties through iodine doping J. Mater. Sci.: Mater. Electron. 32 20093–103
[224] Xiao Y, He S, Li M, Sun W, Wu Z, Dai W and Lu C 2021 Structural evolution and phase transition mechanism of MoSe2 under high pressure Sci. Rep. 11 22090
[225] Jin Z H, Li X D, Mullen J T and Kim K W 2014 Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides Phys. Rev. B 90 045422
[226] Larentis S, Fallahazad B and Tutuc E 2012 Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers Appl. Phys. Lett. 101 223104
[227] Ruppert C, Aslan B and Heinz T F 2014 Optical properties and band gap of single-and few-layer MoTe2 crystals Nano Lett. 14 6231–6
[228] Qu D, Liu X, Huang M, Lee C, Ahmed F, Kim H, Ruoff R S, Hone J and Yoo W J 2017 Carrier-type modulation and mobility improvement of thin MoTe2 Adv. Mater. 29 1606433
[229] Pai H C and Wu Y R 2022. Study of carrier scattering and mobility in monolayer MoTe2 and WTe2 by first-principle analysis Proc. 2022 Int. Symp. on VLSI Technology, Systems and Applications (VLSI-TSA) (IEEE) pp 1–2
[230] Iqbal M W, Amin A, Kamran M A, Ateeq H, Elahi E, Hussain G, Azam S, Aftab S, Alharbi T and Majid A 2019 Tailoring the electrical properties of MoTe2 field effect transistor via chemical doping Superlattices Microstruct. 135 106247
[231] Wang Y, Sohier T, Watanabe K, Taniguchi T, Verstraete M J and Tutuc E 2021 Electron mobility in monolayer WS2 encapsulated in hexagonal boron-nitride Appl. Phys. Lett. 118 102105
[232] Cao Q, Dai Y-W, Xu J, Chen L, Zhu H, Sun Q-Q and Zhang D W 2017 Realizing stable p-type transporting in two-dimensional WS2 films ACS Appl. Mater. Interfaces 9 18215–21
[233] Reshak A H and Auluck S 2003 Electronic and optical properties of 2H-WSe2 intercalated with copper Phys. Rev. B 68 195107
[234] Konar R, Perelshtein I, Teblum E, Telkhozhayeva M, Tkachev M, Richter J J, Cattaruzza E, Pietropolli Charmet A, Stoppa P and Noked M 2020 Scalable synthesis of few-layered 2D tungsten diselenide (2H-WSe2) nanosheets directly grown on tungsten (W) foil using ambient-pressure chemical vapor deposition for reversible Li-ion storage ACS Omega 5 19409–21
[235] Bilc D I, Benea D, Pop V, Ghosez P and Verstraete M J 2021 Electronic and thermoelectric properties of transition-metal dichalcogenides J. Phys. Chem. C 125 27084–97
[236] Rasmussen F A and Thygesen K S 2015 Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides J. Phys. Chem. C 119 13169–83
[237] Liu W, Kang J, Sarkar D, Khatami Y, Jena D and Banerjee K 2013 Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors Nano Lett. 13 1983–90
[238] Allain A and Kis A 2014 Electron and hole mobilities in single-layer WSe2 ACS Nano 8 7180–5
[239] Lee C-H, Silva E C, Calderin L, Nguyen M A T, Hollander M J, Bersch B, Mallouk T E and Robinson J A 2015 Tungsten ditelluride: a layered semimetal Sci. Rep. 5 10013
[240] LvHY, LuWJ,ShaoDF, LiuY, Tan SGandSunYP2015 Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer Europhys. Lett. 110 37004
[241] Hu L, Kang L, Yang J, Huang B and Liu F 2018 Significantly enhanced magnetoresistance in monolayer WTe2 via heterojunction engineering: a first-principles study Nanoscale 10 22231–6
[242] Zhao Y et al 2017 High-electron-mobility and air-stable 2D layered PtSe2 FETs Adv. Mater. 29 1604230
[243] MengXH,ShenYQ,LiuJJ,LvLL,YangX,Gao X, Zhou M, Wang X Y, Zheng Y D and Zhou Z X 2021 The PtSe2/GaN van der Waals heterostructure photocatalyst with type II alignment: a first-principles study Appl. Catal. A: Gen. 624 118332
[244] HuangX,XuL,LiHT, TangSH,MaZL,ZengJ, Xiong F L, Li Z Q and Wang L-L 2021 Two-dimensional PtSe2/hBN vdW heterojunction as photoelectrocatalyst for the solar-driven oxygen evolution reaction: a first principles study Appl. Surf. Sci. 570 151207
[245] Wang Y et al 2015 Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt Nano Lett. 15 4013–8
[246] Yao W et al 2017 Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film Nat. Commun. 8 14216
[247] Absor M A U, Santoso I, Abraha H, Abraha K, Kotaka H, Ishii F and Saito M 2018 Strong Rashba effect in the localized impurity states of halogen-doped monolayer PtSe2 Phys. Rev. B 97 205138
[248] Fan S, Yun S J, Yu W J and Lee Y H 2020 Tailoring quantum tunneling in a vanadium-doped WSe2/SnSe2 heterostructure Adv. Sci. 7 1902751
[249] Rahman A, Kim H J, Noor-A-Alam M and Shin Y-H 2019 A theoretical study on tuning band gaps of monolayer and bilayer SnS2 and SnSe2 under external stimuli Curr. Appl. Phys. 19 709–14
[250] Shafique A, Samad A and Shin Y-H 2017 Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: a first principles study Phys. Chem. Chem. Phys. 19 20677–83
[251] Román R J P et al 2021 Band gap measurements of monolayer h-BN and insights into carbon-related point defects 2D Mater. 8 044001
[252] HuangZY, HeCY, QiX,YangH,LiuWL,WeiXL, Peng X Y and Zhong J X 2014 Band structure engineering of monolayer MoS2 on h-BN: first-principles calculations J. Phys. D: Appl. Phys. 47 075301
[253] Erohin S V and Sorokin P B 2022 Edges in bilayered h-BN: insights into the atomic structure Nanoscale 14 14155–60
[254] Thomas S, Manju M S, Ajith K M, Lee S U and Zaeem M A 2020 Strain-induced work function in h-BN and BCN monolayers Physica E 123 114180
[255] Cooper D R et al 2012 Experimental review of graphene ISRN Condens. Matter Phys. 2012 1–56
[256] Tiras E, Ardali S, Tiras T, Arslan E, Cakmakyapan S, Kazar O, Hassan J, Janzen E and Ozbay E 2013 Effective mass of electron in monolayer graphene: electron-phonon interaction J. Appl. Phys. 113 043708
[257] Schumann T, Dubslaff M, Oliveira M H, Hanke M, Lopes J M J and Riechert H 2014 Effect of buffer layer coupling on the lattice parameter of epitaxial graphene on SiC(0001) Phys. Rev. B 90 041403
[258] Fraj N, Saidi I, Ben Radhia S and Boujdaria K 2008 Band parameters of AlAs, Ge and Si in the 34-band k·p model Semicond. Sci. Technol. 23 085006
[259] Cooper J A 1993 Recent advances in GaAs dynamic memories Adv. Electron. Electron Phys. 86 1–79
[260] Hamada H, Tsutsumi T, Sugiyama H, Matsuzaki H, Song H J, Itami G, Fujimura T, Abdo I, Okada K and Nosaka H 2019 Millimeter-wave InP device technologies for ultra-high speed wireless communications toward beyond 5G Proc. 2019 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 9.2.1–4
[261] Casady J B and Johnson R W 1996 Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review Solid-State Electron. 39 1409–22
[262] Flack T J, Pushpakaran B N and Bayne S B 2016 GaN technology for power electronic applications: a review J. Electron. Mater. 45 2673–82
[263] Kang H K, Park S-H, Jun D H, Kim C Z, Song K M, Park W, Ko C G and Kim H 2011 Te doping in the GaAs tunnel junction for GaInP/GaAs tandem solar cells Semicond. Sci. Technol. 26 075009
[264] Kato Y, Kitamura S, Hiramatsu K and Sawaki N 1994 Selective growth of wurtzite GaN and AlxGa1.xN on GaN sapphire substrates by metalorganic vapor-phase epitaxy J. Cryst. Growth 144 133–40
[265] Awasthi H, Kumar N, Purwar V, Gupta A, Varshney V and Rai S 2022 In Recent Trends in Electronics and Communication eds A Dhawan, V S Tripathi, K V Arya and K Naik (Springer) pp 137–43
[266] Tripathi S, Gupta N, Tripathi P and Chaujar R 2019 GaN silicon-on-insulator (SOI) n-channel FinFET for high-performance low power applications Proc. 2019 IEEE 14th Nanotechnol. Materials and Devices Conf. (NMDC) (IEEE) pp 1–4
[267] Das D 1998 Quantum confinement effects in nano-silicon thin films Solid State Commun. 108 983–7
[268] Nakamura Y, Watanabe K, Fukuzawa Y and Ichikawa M 2005 Observation of the quantum-confinement effect in individual Ge nanocrystals on oxidized Si substrates using scanning tunneling spectroscopy Appl. Phys. Lett. 87 133119
[269] Le Quang T, Cherkez V, Nogajewski K, Potemski M, Dau M T, Jamet M, Mallet P and Veuillen J-Y 2017 Scanning tunneling spectroscopy of van der Waals graphene/semiconductor interfaces: absence of Fermi level pinning 2D Mater. 4 035019
[270] Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M and Banerjee K 2015 A subthermionic tunnel field-effect transistor with an atomically thin channel Nature 526 91–95
[271] Miao J S et al 2022 Heterojunction tunnel triodes based on two-dimensional metal selenide and three-dimensional silicon Nat. Electron. 5 744–51
[272] Ruzmetov D et al 2016 Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride ACS Nano 10 3580–8
[273] Liu C-Y, Huang H-C, Choi W S, Kim J, Jung K, Sun W, Tansu N, Zhou W D, Kuo H-C and Li X L 2020 Hybrid integration of n-MoS2/p-GaN diodes by quasi-van der Waals epitaxy ACS Appl. Electron. Mater. 2 419–25
[274] Liang F-X, Zhao X-Y, Jiang J-J, Hu J-G, Xie W-Q, Lv J, Zhang Z-X, Wu D and Luo L-B 2019 Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2 /pyramid Si heterojunction Small 15 e1903831
[275] Wu D, Guo C, Wang Z, Ren X, Tian Y, Shi Z, Lin P, Tian Y, Chen Y and Li X 2021 A defect-induced broadband photodetector based on WS2/pyramid Si 2D/3D mixed-dimensional heterojunction with a light confinement effect Nanoscale 13 13550–7
[276] Kuppadakkath A et al 2022 Direct growth of monolayer MoS2 on nanostructured silicon waveguides Nanophotonics 11 4397–408
[277] Chen M-C et al 2014 Hybrid Si/TMD 2D electronic double channels fabricated using solid CVD few-layer-MoS2 stacking for Vth matching and CMOS-compatible 3DFETs Proc. 2014 IEEE Int. Electron Devices Meeting (IEEE) pp 33.35.31–4
[278] Yim C et al 2014 Heterojunction hybrid devices from vapor phase grown MoS2 Sci. Rep. 4 5458
[279] Chowdhury R K, Maiti R, Ghorai A, Midya A and Ray S K 2016 Novel silicon compatible p-WS2 2D/3D heterojunction devices exhibiting broadband photoresponse and superior detectivity Nanoscale 8 13429–36
[280] Kumar G, Prakash N, Singh M, Chakravorty A, Kabiraj D, Singh S P, Pal P and Khanna S P 2019 Solution-processed-2D on 3D heterojunction UV-visible photodetector for low-light applications ACS Appl. Electron. Mater. 1 1489–97
[281] Patel M, Pataniya P M, Late D J and Sumesh C K 2021 Plasmon-enhanced photoresponse in Ag-WS2/Si heterojunction Appl. Surf. Sci. 538 148121
[282] Wang L, Jie J S, Shao Z B, Zhang Q, Zhang X H, Wang Y M, Sun Z and Lee S-T 2015 MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors Adv. Funct. Mater. 25 2910–9
[283] Xie C, Zeng L, Zhang Z, Tsang Y-H, Luo L and Lee J-H 2018 High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate Nanoscale 10 15285–93
[284] Singh D K, Pant R, Roul B, Chowdhury A M, Nanda K K and Krupanidhi S B 2020 Temperature-dependent electrical transport and optoelectronic properties of SnS2/p-Si heterojunction ACS Appl. Electron. Mater. 2 2155–63
[285] Shawkat M S, Chowdhury T A, Chung H-S, Sattar S, Ko T-J, Larsson J A and Jung Y 2020 Large-area 2D PtTe2/silicon vertical-junction devices with ultrafast and high-sensitivity photodetection and photovoltaic enhancement by integrating water droplets Nanoscale 12 23116–24
[286] Wu D, Xu M, Zeng L, Shi Z, Tian Y, Li X J, Shan C-X and Jie J 2022 In situ fabrication of PdSe2/GaN schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio ACS Nano 16 5545–55
[287] Shawkat M S, Chung H-S, Dev D, Das S, Roy T and Jung Y 2019 Two-dimensional/three-dimensional schottky junction photovoltaic devices realized by the direct CVD growth of vdW 2D PtSe2 layers on silicon ACS Appl. Mater. Interfaces 11 27251–8
[288] Son S B, Kim Y, Cho B, Choi C-J and Hong W-K 2018 Temperature-dependent electronic charge transport characteristics at MoS2/p-type Ge heterojunctions J. Alloys Compd. 757 221–7
[289] Hasani A, Van Lee Q, Tekalgne M, Choi M-J, Lee T H, Jang H W and Kim S Y 2019 Direct synthesis of two-dimensional MoS2 on p-type Si and application to solar hydrogen production NPG Asia Mater. 11 47
[290] Hasani A, Van Le Q, Tekalgne M, Choi M-J, Choi S, Lee TH, Kim H, Ahn S H, Jang H WandKimS Y 2019 Fabrication of a WS2/p-Si heterostructure photocathode using direct hybrid thermolysis ACS Appl. Mater. Interfaces 11 29910–6
[291] Xu K, Cai Y H and Zhu W J 2018 Esaki diodes based on 2D/3D heterojunctions IEEE Trans. Electron Devices 65 4155–9
[292] Kim Y, Kwon S, Seo E-J, Nam J H, Jang H Y, Kwon S-H, Kwon J-D, Kim D-W and Cho B 2018 Facile fabrication of a two-dimensional TMD/Si heterojunction photodiode by atmospheric-pressure plasma-enhanced chemical vapor deposition ACS Appl. Mater. Interfaces 10 36136–43
[293] Zhang K et al 2017 Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides Nanoscale 10 336–41
[294] Pendurthi R, Jayachandran D, Kozhakhmetov A, Trainor N, Robinson J A, Redwing J M and Das S 2022 Heterogeneous integration of atomically thin semiconductors for non-von neumann CMOS Small 18 e2202590
[295] Baidoo J K et al 2022 Sequential growth of vertical transition-metal dichalcogenide heterostructures on rollable aluminum foil ACS Nano 16 8851–9
[296] Ruzmetov D et al 2018 Van der Waals interfaces in epitaxial vertical metal/2D/3D semiconductor heterojunctions of monolayer MoS2 and GaN 2D Mater. 5 045016
[297] Lee C H, Krishnamoorthy S, Paul P K, O’Hara D J, Brenner M R, Kawakami R K, Arehart A R and Rajan S 2017 Large-area SnSe2/GaN heterojunction diodes grown by molecular beam epitaxy Appl. Phys. Lett. 111 202101
[298] Seredy′ zek R, nski B, Ogorza.ek Z, Zajkowska W, Bo˙ Tokarczyk M, Suffczy′nski J, Kret S, Sadowski J, Gryglas-Borysiewicz M and Pacuski W 2021 Molecular beam epitaxy of a 2D material nearly lattice matched to a 3D substrate: NiTe2 on GaAs Cryst. Growth Des. 21 5773–9
[299] Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B and Li H 2020 Van der Waals epitaxy of III-Nitride semiconductors based on 2D materials for flexible applications Adv. Mater. 32 e1903407
[300] Vuong P et al 2020 Control of the mechanical adhesion of III–V materials grown on layered h-BN ACS Appl. Mater. Interfaces 12 55460–6
[301] Kim H et al 2021 Impact of 2D-3D heterointerface on remote epitaxial interaction through graphene ACS Nano 15 10587–96
[302] Liu Y, Guo J, Zhu E, Wang P, Gambin V, Huang Y and Duan X 2019 Maximizing the current output in self-aligned graphene-InAs-metal vertical transistors ACS Nano 13 847–54
[303] Ma C-H, Lu L-S, Song H L, Chen J-W, Wu P-C, Wu C-L, Huang R, Chang W-H and Chu Y-H 2021 Remote growth of oxide heteroepitaxy through MoS2 Appl. Mater. 9 051115
[304] Schram T et al 2021 High yield and process uniformity for 300 mm integrated WS2 FETs Proc. 2021 Symp. on VLSI Technology (IEEE) pp 1–2
[305] Periyanagounder D, Gnanasekar P, Varadhan P, He J-H and Kulandaivel J 2018 High performance, self-powered photodetectors based on a graphene/silicon Schottky junction diode J. Mater. Chem. C 6 9545–51
[306] WangJN,WangHY, ChenQ,QiLG,ZhengZQ,HuoNJ, Gao W, Wang X Z and Li J B 2022 A Weyl semimetal WTe2/GaAs 2D/3D Schottky diode with high rectification ratio and unique photocurrent behavior Appl. Phys. Lett. 121 103502
[307] Yang H, Heo J, Park S, Song H J, Seo D H, Byun K-E, Kim P, Yoo I, Chung H-J and Kim K 2012 Graphene barristor, a triode device with a gate-controlled Schottky barrier Science 336 1140–3
[308] Liu Y, Zhou H, Cheng R, Yu W, Huang Y and Duan X 2014 Highly flexible electronics from scalable vertical thin film transistors Nano Lett. 14 1413–8
[309] Vaziri S, Lupina G, Henkel C, Smith A D, Ostling M, Dabrowski J, Lippert G, Mehr W and Lemme M C 2013 A graphene-based hot electron transistor Nano Lett. 13 1435–9
[310] Vaziri S, Belete M, Dentoni Litta E, Smith A D, Lupina G, Lemme M C and Ostling M 2015 Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors Nanoscale 7 13096–104
[311] Torres C M Jr et al 2015 High-current gain two-dimensional MoS2-base hot-electron transistors Nano Lett. 15 7905–12
[312] Liang B-W, Chang W-H, Lin H-Y, Chen P-C, Zhang Y-T, Simbulan K B, Li K-S, Chen J-H, Kuan C-H and Lan Y-W 2021 High-frequency graphene base hot-electron transistor ACS Nano 15 6756–64
[313] Lan Y-W et al 2016 Dual-mode operation of 2D material-base hot electron transistors Sci. Rep. 6 32503
[314] Jeong H et al 2015 Semiconductor-insulator-semiconductor diode consisting of monolayer MoS2, h-BN, and GaN heterostructure ACS Nano 9 10032–8
[315] Miao J et al 2020 Gate-tunable semiconductor heterojunctions from 2D/3D van der Waals interfaces Nano Lett. 20 2907–15
[316] Nishiguchi K, Castellanos-Gomez A, Yamaguchi H, Fujiwara A, van der Zant H S J and Steele G A 2015 Observing the semiconducting band-gap alignment of MoS2 layers of different atomic thicknesses using a MoS2/SiO2/Si heterojunction tunnel diode Appl. Phys. Lett. 107 053101
[317] Krishnamoorthy S, Lee E W, Lee C H, Zhang Y W, McCulloch W D, Johnson J M, Hwang J, Wu Y Y and Rajan S 2016 High current density 2D/3D MoS2/GaN Esaki tunnel diodes Appl. Phys. Lett. 109 183505
[318] Jia R D, Huang Q Q and Huang R 2019 Vertical SnS2/Si heterostructure for tunnel diodes Sci. China Inf. Sci. 63 122401
[319] Giannazzo F, Panasci S E, Schiliro E, Roccaforte F, Koos A, Nemeth M and Pecz B 2022 Esaki diode behavior in highly uniform MoS2/silicon carbide heterojunctions Adv. Mater. Interfaces 9 2200915
[320] BiJH,ZouXM,LvYW, LiGL,LiuXQ,LiuY, Yu T, Yang Z Y and Liao L 2020 InGaZnO tunnel and junction transistors based on vertically stacked black phosphorus/InGaZnO heterojunctions Adv. Electron. Mater. 6 2000291
[321] Choi W, Ahn J, Kim K-T, Jin H-J, Hong S, Hwang D K and Im S 2021 Ambipolar channel p-TMD/n-Ga2O3 junction field effect transistors and high speed photo-sensing in TMD channel Adv. Mater. 33 e2103079
[322] Lee C H, Park Y, Youn S, Yeom M J, Kum H S, Chang J, Heo J and Yoo G 2022 Design of p-WSe2/n-Ge heterojunctions for high-speed broadband photodetectors Adv. Funct. Mater. 32 2107992
[323] Seo W et al 2022 MoS2/p-Si heterojunction with graphene interfacial layer for high performance 940 nm infrared photodetector Appl. Surf. Sci. 604 154485
[324] Lan C, Li C, Wang S, He T, Jiao T, Wei D, Jing W, Li L and Liu Y 2016 Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction ACS Appl. Mater. Interfaces 8 18375–82
[325] LuZJ,XuY, Yu YQ,XuKW, MaoJ,XuGB,MaYM, Wu D and Jie J S 2020 Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition Adv. Funct. Mater. 30 1907951
[326] Chauhan P, Patel A B, Solanki G K, Patel K D, Pathak V M, Sumesh C K, Narayan S and Jha P K 2021 Rhenium substitutional doping for enhanced photoresponse of n-SnSe2/p-Si heterojunction based tunable and high-performance visible-light photodetector Appl. Surf. Sci. 536 147739
[327] Hwang A et al 2021 Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure Sci. Adv. 7 eabj2521
[328] Wu D et al 2021 Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation ACS Nano 15 10119–29
[329] Chen W J, Liang R R, Zhang S Q, Liu Y, Cheng W J, Sun C C and Xu J 2019 Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure Nano Res. 13 127–32
[330] LiKL,WangWJ,LiJF, JiangWX,FengMandHeY 2020 High-responsivity, self-driven photodetectors based on monolayer WS2/GaAs heterojunction Photon. Res. 8 1368–74
[331] Jain S K et al 2021 2D/3D hybrid of MoS2/GaN for a high-performance broadband photodetector ACS Appl. Electron. Mater. 3 2407–14
[332] Wang Y H et al 2021 2021. p-GaSe/n-Ga2O3 van der Waals heterostructure photodetector at solar-blind wavelengths with ultrahigh responsivity and detectivity ACS Photonics 8 2256–64
[333] Guo N et al 2020 Light-driven WSe2-ZnO junction field-effect transistors for high-performance photodetection Adv. Sci. 7 1901637
[334] Riazimehr S, Kataria S, Bornemann R, Haring Bolivar P, Ruiz F J G, Engstrom O, Godoy A and Lemme M C 2017 High photocurrent in gated graphene-silicon hybrid photodiodes ACS Photonics 4 1506–14
[335] Yim C et al 2016 High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature ACS Nano 10 9550–8
[336] Aftab S, Samiya M, Iqbal M W, Kabir F, Iqbal M Z and Shehzad M A 2022 Platinum disulfide (PtS2) and silicon pyramids: efficient 2D/3D heterojunction tunneling and breakdown diodes ACS Appl. Electron. Mater. 4 917–24
[337] Yao J, Zheng Z and Yang G 2018 Ultrasensitive 2D/3D heterojunction multicolor photodetectors: a synergy of laterally and vertically aligned 2D layered materials ACS Appl. Mater. Interfaces 10 38166–72
[338] Lopez-Sanchez O, Alarcon Llado E, Koman V, Fontcuberta I Morral A, Radenovic A and Kis A 2014 Light generation and harvesting in a van der Waals heterostructure ACS Nano 8 3042–8
[339] Ye Y, Ye Z L, Gharghi M, Zhu H Y, Zhao M, Wang Y, Yin X B and Zhang X 2014 Exciton-dominant electroluminescence from a diode of monolayer MoS2 Appl. Phys. Lett. 104 193508
[340] Wang C Y, Kang Z, Zheng Z, Zhang Y N, Zhang L W, Su J, Zhang Z, Liu N S, Li L Y and Gao Y H 2019 Monolayer MoSe2/NiO van der Waals heterostructures for infrared light-emitting diodes J. Mater. Chem. C 7 13613–21
[341] Yang P et al 2021 Large-area monolayer MoS2 nanosheets on GaN substrates for light-emitting diodes and valley-spin electronic devices ACS Appl. Nano Mater. 4 12127–36
[342] Li D, Cheng R, Zhou H, Wang C, Yin A, Chen Y, Weiss N O, Huang Y and Duan X 2015 Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide Nat. Commun. 6 7509
[343] Tsai M-L, Su S-H, Chang J-K, Tsai D-S, Chen C-H, Wu C-I, Li L-J, Chen L-J and He J-H 2014 Monolayer MoS2 heterojunction solar cells ACS Nano 8 8317–22
[344] Wang P et al 2015 Tunable graphene/indium phosphide heterostructure solar cells Nano Energy 13 509–17
[345] HaoLZ,GaoW, LiuYJ,HanZD,XueQZ,GuoWY, Zhu J and Li Y R 2015 High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells Nanoscale 7 8304–8
[346] Meng J-H, Liu X, Zhang X-W, Zhang Y, Wang H-L, Yin Z-G, Zhang Y-Z, Liu H, You J-B and Yan H 2016 Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer Nano Energy 28 44–50
[347] Hegazy H H, Afzal A M, Dahshan A, Iqbal M W and Kebaili I 2022 High-performance 2D/3D hybrid dimensional p-n heterojunction solar cell with reduced recombination rate by an interfacial layer J. Mater. Chem. C 10 14982–92
[348] Lin S, Li X, Wang P, Xu Z, Zhang S, Zhong H, Wu Z, Xu W and Chen H 2015 Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride Sci. Rep. 5 15103
[349] LiXQ,ChenWC,ZhangSJ,Wu ZQ,WangP, XuZJ, Chen H S, Yin W Y, Zhong H K and Lin S S 2015 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell Nano Energy 16 310–9
[350] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 A graphene-based broadband optical modulator Nature 474 64–67
[351] Sorianello V, Midrio M, Contestabile G, Asselberghs I, van Campenhout J, Huyghebaert C, Goykhman I, Ott A K, Ferrari A C and Romagnoli M 2017 Graphene–silicon phase modulators with gigahertz bandwidth Nat. Photon. 12 40–44
[352] Sun Z P, Martinez A and Wang F 2016 Optical modulators with 2D layered materials Nat. Photon. 10 227–38
[353] Li W J, Lin Z Y and Yang G W 2017 A 2D self-assembled MoS2/ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution Nanoscale 9 18290–8
[354] Zhang Z, Qian Q, Li B and Chen K J 2018 Interface engineering of monolayer MoS2/GaN hybrid heterostructure: modified band alignment for photocatalytic water splitting application by nitridation treatment ACS Appl. Mater. Interfaces 10 17419–26
[355] Wang S, Ren C, Tian H, Yu J and Sun M 2018 MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: a first-principles study Phys. Chem. Chem. Phys. 20 13394–9