• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 4, 42001 (2023)
1, 1, 1, 1..., 1, 1, 1, 1, 1, 1, 1, 1, 1 and 1,2,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
  • 2Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/ace501 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Comparative coherence between layered and traditional semiconductors: unique opportunities for heterogeneous integration[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42001 Copy Citation Text show less
    References

    [1] Wang C, Duan X D and Duan X F 2017 Graphene electronics 2D Materials: Properties and Devices ed P Avouris, T Low and T F Heinz (Cambridge University Press) pp 159–79

    [2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9

    [3] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Atomically thin MoS2: a new direct-gap semiconductor Phys. Rev. Lett. 105 136805

    [4] ChenY, LaiZC,ZhangX,Fan ZX,HeQY, Tan CLand Zhang H 2020 Phase engineering of nanomaterials Nat. Rev. Chem. 4 243–56

    [5] HuZ,Wu Z,HanC,HeJ,NiZandChenW2018 Two-dimensional transition metal dichalcogenides: interface and defect engineering Chem. Soc. Rev. 47 3100–28

    [6] LiSY, MaY, OuedraogoNAN,LiuFM,You CY, Deng W J and Zhang Y Z 2022 p-/n-type modulation of 2D transition metal dichalcogenides for electronic and optoelectronic devices Nano Res. 15 123–44

    [7] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y and Ren T-L 2022 Vertical MoS2 transistors with sub-1-nm gate lengths Nature 603 259–64

    [8] QiY et al 2016 Superconductivity in weyl semimetal candidate MoTe2 Nat. Commun. 7 11038

    [9] Xiao D, Liu G-B, Feng W, Xu X and Yao W 2012 Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides Phys. Rev. Lett. 108 196802

    [10] Liu Y, Liu S, Li B, Yoo W J and Hone J 2022 Identifying the transition order in an artificial ferroelectric van der Waals heterostructure Nano Lett. 22 1265–9

    [11] Cai L et al 2015 Vacancy-induced ferromagnetism of MoS2 nanosheets J. Am. Chem. Soc. 137 2622–7

    [12] Zhang S M et al 2022 Lateral layered semiconductor multijunctions for novel electronic devices Chem. Soc. Rev. 51 4000–22

    [13] Pham P V, Bodepudi S C, Shehzad K, Liu Y, Xu Y, Yu B and Duan X 2022 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges Chem. Rev. 122 6514–613

    [14] Shanks D N, Mahdikhanysarvejahany F, Stanfill T G, Koehler M R, Mandrus D G, Taniguchi T, Watanabe K, LeRoy B J and Schaibley J R 2022 Interlayer exciton diode and transistor Nano Lett. 22 6599–605

    [15] Nakamura K, Nagamura N, Ueno K, Taniguchi T, Watanabe K and Nagashio K 2020 All 2D heterostructure tunnel field-effect transistors: impact of band alignment and heterointerface quality ACS Appl. Mater. Interfaces 12 51598–606

    [16] Zhou J D et al 2018 A library of atomically thin metal chalcogenides Nature 556 355–9

    [17] Habib M R, Wang S, Wang W, Xiao H, Obaidulla S M, Gayen A, Khan Y, Chen H and Xu M 2019 Electronic properties of polymorphic two-dimensional layered chromium disulphide Nanoscale 11 20123–32

    [18] Li B et al 2021 Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order Nat. Mater. 20 818–25

    [19] SunXD et al 2020 Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2 Nano Res. 13 3358–63

    [20] O’Hara D J et al 2018 Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit Nano Lett. 18 3125–31

    [21] Zhao Y, Cong H, Li P, Wu D, Chen S and Luo W 2021 Hexagonal RuSe2 nanosheets for highly efficient hydrogen evolution electrocatalysis Angew. Chem., Int. Ed. 60 7013–7

    [22] Li J et al 2020 General synthesis of two-dimensional van der Waals heterostructure arrays Nature 579 368–74

    [23] PiLJ,LiL,LiuKL,ZhangQF, LiHQandZhaiTY 2019 Recent progress on 2D noble-transition-metal dichalcogenides Adv. Funct. Mater. 29 1904932

    [24] ZhouX,HuXZ,ZhouSS,ZhangQ,LiHQandZhaiTY 2017 Ultrathin 2D GeSe2 rhombic flakes with high anisotropy realized by van der Waals epitaxy Adv. Funct. Mater. 27 1703858

    [25] Yan H-J, Li Z B, Liu S-C, Wang X, Zhang X, Xue D-J and Hu J-S 2022 Investigation of weak interlayer coupling in 2D layered GeS2 from theory to experiment Nano Res. 15 1013–9

    [26] OuJZ et al 2015 Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing ACS Nano 9 10313–23

    [27] Yan R et al 2015 Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment Nano Lett. 15 5791–8

    [28] Wang X G et al 2021 Ultrathin FeTe nanosheets with tetragonal and hexagonal phases synthesized by chemical vapor deposition Mater. Today 45 35–43

    [29] Liu H and Xue Y 2021 Van der Waals epitaxial growth and phase transition of layered FeSe2 nanocrystals Adv. Mater. 33 2008456

    [30] Purwitasari W, Villaos R A B, Verzola I M R, Sufyan A, Huang Z-Q, Hsu C-H and Chuang F-C 2022 High thermoelectric performance in 2D technetium dichalcogenides TcX2 (X = S, Se, or Te) ACS Appl. Energy Mater. 5 8650–7

    [31] Maiti P S, Ghosh S, Leitus G, Houben L and Bar Sadan M 2021 Oriented attachment of 2D nanosheets: the case of few-layer Bi2Se3 Chem. Mater. 33 7558–65

    [32] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 2D transition metal dichalcogenides Nat. Rev. Mater. 2 17033

    [33] Nourbakhsh A et al 2016 MoS2 field-effect transistor with sub-10 nm channel length Nano Lett. 16 7798–806

    [34] Yang D Y et al 2022 Spontaneous-polarization-induced photovoltaic effect in rhombohedrally stacked MoS2 Nat. Photon. 16 469–74

    [35] He J G, Hummer K and Franchini C 2014 Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2 Phys. Rev. B 89 075409

    [36] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Type-II weyl semimetals Nature 527 495–8

    [37] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Phase-engineered low-resistance contacts for ultrathin MoS2 transistors Nat. Mater. 13 1128–34

    [38] Cho S et al 2015 Phase patterning for ohmic homojunction contact in MoTe2 Science 349 625–8

    [39] Lin Y-C, Dumcenco D O, Huang Y-S and Suenaga K 2014 Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2 Nat. Nanotechnol. 9 391–6

    [40] ZhuJQ et al 2017 Argon plasma induced phase transition in monolayer MoS2 J. Am. Chem. Soc. 139 10216–9

    [41] Li Y et al 2021 Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution Nano Energy 84 105898

    [42] Acerce M, Voiry D and Chhowalla M 2015 Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials Nat. Nanotechnol. 10 313–8

    [43] He Q, Lin Z, Ding M, Yin A, Halim U, Wang C, Liu Y, Cheng H-C, Huang Y and Duan X 2019 In situ probing molecular intercalation in two-dimensional layered semiconductors Nano Lett. 19 6819–26

    [44] Liu L et al 2018 Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers Nat. Mater. 17 1108–14

    [45] Komsa H-P and Krasheninnikov A V 2015 Native defects in bulk and monolayer MoS2 from first principles Phys. Rev. B 91 125304

    [46] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J-C 2013 Intrinsic structural defects in monolayer molybdenum disulfide Nano Lett. 13 2615–22

    [47] Wu K,LiZ,TangJB,LvXL,WangHL,LuoRC,LiuP, Qian L H, Zhang S P and Yuan S L 2018 Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement Nano Res. 11 4123–32

    [48] Jeong H Y, Jin Y, Yun S J, Zhao J, Baik J, Keum D H, Lee H S and Lee Y H 2017 Heterogeneous defect domains in single-crystalline hexagonal WS2 Adv. Mater. 29 1605043

    [49] Bertoldo F et al 2021 Intrinsic defects in MoS2 grown by pulsed laser deposition: from monolayers to bilayers ACS Nano 15 2858–68

    [50] Schuler B et al 2019 Large spin-orbit splitting of deep in-gap defect states of engineered sulfur vacancies in monolayer WS2 Phys. Rev. Lett. 123 076801

    [51] LuoN,ChenC,YangDM,HuWYandDongFQ2021S defect-rich ultrathin 2D MoS2: the role of S point-defects and S stripping-defects in the removal of Cr(VI) via synergistic adsorption and photocatalysis Appl. Catal. B: Environ. 299 120664

    [52] Komsa H-P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2012 Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping Phys. Rev. Lett. 109 035503

    [53] Seo S-Y, Park J, Park J, Song K, Cha S, Sim S, Choi S-Y, Yeom H W, Choi H and Jo M-H 2018 Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe Nat. Electron. 1 512–7

    [54] Kim J, Park H, Yoo S, Im Y-H, Kang K and Kim J 2021 Defect-engineered n-doping of WSe2 via argon plasma treatment and its application in field-effect transistors Adv. Mater. Interfaces 8 2100718

    [55] Gao L et al 2020 Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters Adv. Mater. 32 e1906646

    [56] Tsai C, Li H, Park S, Park J, Han H S, Norskov J K, Zheng X and Abild-Pedersen F 2017 Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution Nat. Commun. 8 15113

    [57] McDonnell S, Addou R, Buie C, Wallace R M and Hinkle C L 2014 Defect-dominated doping and contact resistance in MoS2 ACS Nano 8 2880–8

    [58] Sim D M, Kim M, Yim S, Choi M-J, Choi J, Yoo S and Jung Y S 2015 Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption ACS Nano 9 12115–23

    [59] Donarelli M, Prezioso S, Perrozzi F, Bisti F, Nardone M, Giancaterini L, Cantalini C and Ottaviano L 2015 Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors Sens. Actuators B 207 602–13

    [60] Yin Y et al 2016 Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets J. Am. Chem. Soc. 138 7965–72

    [61] Peto J, Ollar T, Vancso P, Popov Z I, Magda G Z, Dobrik G, Hwang C, Sorokin P B and Tapaszto L 2018 Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions Nat. Chem. 10 1246–51

    [62] Zuo Y et al 2022 Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply Nat. Commun. 13 1007

    [63] Zhang X et al 2017 Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode Nat. Commun. 8 15881

    [64] Tanoh A O A et al 2019 Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands Nano Lett. 19 6299–307

    [65] Yun WS,HanSW, HongSC,KimIGandLeeJD2012 Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te) Phys. Rev. B 85 033305

    [66] Tran V, Soklaski R, Liang Y and Yang L 2014 Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus Phys. Rev. B 89 235319

    [67] Zhang Y et al 2014 Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 Nat. Nanotechnol. 9 111–5

    [68] Xia C, Xiong W, Du J, Wang T, Peng Y, Wei Z, Li J and Jia Y 2018 Type-I transition metal dichalcogenides lateral homojunctions: layer thickness and external electric field effects Small 14 e1800365

    [69] Liu Y, Nan H, Wu X, Pan W, Wang W, Bai J, Zhao W, Sun L, Wang X and Ni Z 2013 Layer-by-layer thinning of MoS2 by plasma ACS Nano 7 4202–9

    [70] KimKS et al 2019 Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction Nat. Commun. 10 4701

    [71] Zhou X L et al 2021 Patterning of transition metal dichalcogenides catalyzed by surface plasmons with atomic precision Chem 7 1626–38

    [72] Lee D, Choi Y, Kim J and Kim J 2022 Recessed-channel WSe2 field-effect transistor via self-terminated doping and layer-by-layer etching ACS Nano 16 8484–92

    [73] Wang C et al 2018 Monolayer atomic crystal molecular superlattices Nature 555 231–6

    [74] Huang Y, Liang J, Wang C, Yin S, Fu W, Zhu H and Wan C 2020 Hybrid superlattices of two-dimensional materials and organics Chem. Soc. Rev. 49 6866–83

    [75] Liu L et al 2022 Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire Nature 605 69–75

    [76] Wang Z et al 2021 Controllable doping in 2D layered materials Adv. Mater. 33 2104942

    [77] Conley H J, Wang B, Ziegler J I, Haglund R F Jr, Pantelides S T and Bolotin K I 2013 Bandgap engineering of strained monolayer and bilayer MoS2 Nano Lett. 13 3626–30

    [78] Blundo E, Felici M, Yildirim T, Pettinari G, Tedeschi D, Miriametro A, Liu B, Ma W, Lu Y and Polimeni A 2020 Evidence of the direct-to-indirect band gap transition in strained two-dimensional WS2, MoS2, and WSe2 Phys. Rev. Res. 2 012024(R)

    [79] Li Z et al 2020 Efficient strain modulation of 2D materials via polymer encapsulation Nat. Commun. 11 1151

    [80] Zhang C, Li M-Y, Tersoff J, Han Y, Su Y, Li L-J, Muller D A and Shih C-K 2018 Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions Nat. Nanotechnol. 13 152–8

    [81] LeeJ,Yun SJ,SeoC,ChoK,KimTS,AnGH,KangK, Lee H S and Kim J 2021 Switchable, tunable, and directable exciton funneling in periodically wrinkled WS2 Nano Lett. 21 43–50

    [82] Kozhakhmetov A et al 2021 Controllable p-type doping of 2D WSe2 via vanadium substitution Adv. Funct. Mater. 31 2105252

    [83] Li S et al 2021 Tunable doping of rhenium and vanadium into transition metal dichalcogenides for two-dimensional electronics Adv. Sci. 8 e2004438

    [84] Suh J et al 2014 Doping against the native propensity of MoS2: degenerate hole doping by cation substitution Nano Lett. 14 6976–82

    [85] Suh J et al 2018 Reconfiguring crystal and electronic structures of MoS2 by substitutional doping Nat. Commun. 9 199

    [86] Tang L et al 2021 Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb-doping Adv. Funct. Mater. 31 2006941

    [87] Cai Z et al 2020 Dual-additive assisted chemical vapor deposition for the growth of Mn-doped 2D MoS2 with tunable electronic properties Small 16 e1903181

    [88] Urbanova V, Antonatos N, Plutnar J, Lazar P, Michalicka J, Otyepka M, Sofer Z and Pumera M 2021 Rhenium doping of layered transition-metal diselenides triggers enhancement of photoelectrochemical activity ACS Nano 15 2374–85

    [89] Li H, Cheng M, Wang P, Du R, Song L, He J and Shi J 2022 Reducing contact resistance and boosting device performance of monolayer MoS2 by in situ Fe doping Adv. Mater. 34 e2200885

    [90] Sun Q-Q, Li Y-J, He J-L, Yang W, Zhou P, Lu H-L, Ding S-J and Zhang D W 2013 The physics and backward diode behavior of heavily doped single layer MoS2 based p-n junctions Appl. Phys. Lett. 102 093104

    [91] Zhang F et al 2019 Carbon doping of WS2 monolayers: bandgap reduction and p-type doping transport Sci. Adv. 5 eaav5003

    [92] Nipane A, Karmakar D, Kaushik N, Karande S and Lodha S 2016 Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation ACS Nano 10 2128–37

    [93] Li Z, Li D, Wang H, Xu X, Pi L, Chen P, Zhai T and Zhou X 2022 Universal p-type doping via Lewis acid for 2D transition-metal dichalcogenides ACS Nano 16 4884–91

    [94] Kim J et al 2021 Wafer-scale production of transition metal dichalcogenides and alloy monolayers by nanocrystal conversion for large-scale ultrathin flexible electronics Nano Lett. 21 9153–63

    [95] Duan X et al 2016 Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties Nano Lett. 16 264–9

    [96] AnBX,MaY, ChuFH,LiXH,Wu Y, You CY, DengWJ, Li S Y and Zhang Y Z 2022 Growth of centimeter scale Nb1.xWxSe2 monolayer film by promoter assisted liquid phase chemical vapor deposition Nano Res. 15 2608–15

    [97] Radisavljevic B and Kis A 2013 Mobility engineering and a metal-insulator transition in monolayer MoS2 Nat. Mater. 12 815–20

    [98] Li D, Chen M, Sun Z, Yu P, Liu Z, Ajayan P M and Zhang Z 2017 Two-dimensional non-volatile programmable p-n junctions Nat. Nanotechnol. 12 901–6

    [99] Wu E, Xie Y, Zhang J, Zhang H, Hu X, Liu J, Zhou C and Zhang D 2019 Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation Sci. Adv. 5 eaav3430

    [100] Wu GJ et al 2020 Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains Nat. Electron. 3 43–50

    [101] Utama M et al 2019 A dielectric-defined lateral heterojunction in a monolayer semiconductor Nat. Electron. 2 60–65

    [102] Chiang C-C, Lan H-Y, Pang C-S, Appenzeller J and Chen Z H 2022 Air-stable p-doping in record high-performance monolayer WSe2 devices IEEE Electron Device Lett. 43 319–22

    [103] Fang H, Tosun M, Seol G, Chang T C, Takei K, Guo J and Javey A 2013 Degenerate n-doping of few-layer transition metal dichalcogenides by potassium Nano Lett. 13 1991–5

    [104] Nassiri Nazif K et al 2021 High-performance p-n junction transition metal dichalcogenide photovoltaic cells enabled by MoOx doping and passivation Nano Lett. 21 3443–50

    [105] Borah A, Nipane A, Choi M S, Hone J and Teherani J T 2021 Low-resistance p-type ohmic contacts to ultrathin WSe2 by using a monolayer dopant ACS Appl. Electron. Mater. 3 2941–7

    [106] Kiriya D, Tosun M, Zhao P, Kang J S and Javey A 2014 Air-stable surface charge transfer doping of MoS2 by benzyl viologen J. Am. Chem. Soc. 136 7853–6

    [107] Lee E K, Abdullah H, Torricelli F, Lee D H, Ko J K, Kim H H, Yoo H and Oh J H 2021 Boosting the optoelectronic properties of molybdenum diselenide by combining phase transition engineering with organic cationic dye doping ACS Nano 15 17769–79

    [108] Wang C, Huang Y and Duan X F 2017 Enhanced electrical characteristics of black phosphorus by polyaniline and protonic acid surface doping Proc. IEEE 17th Int. Conf. on Nanotechnology (IEEE-NANO) (IEEE) pp 453–5

    [109] Pei S H, Wang Z H and Xia J 2022 Interlayer coupling: an additional degree of freedom in two-dimensional materials ACS Nano 16 11498–503

    [110] Li Y, Qin J-K, Xu C-Y, Cao J, Sun Z-Y, Ma L-P, Hu P A, Ren W C and Zhen L 2016 Electric field tunable interlayer relaxation process and interlayer coupling in WSe2/graphene heterostructures Adv. Funct. Mater. 26 4319–28

    [111] Pei S H, Wang Z H and Xia J 2022 High pressure studies of 2D materials and heterostructures: a review Mater. Des. 213 110363

    [112] Zhong W, Zhao Y, Zhu B B, Sha J J, Walker E S, Bank S, Chen Y F, Akinwande D and Tao L 2020 Anisotropic thermoelectric effect and field-effect devices in epitaxial bismuthene on Si (111) Nanotechnology 31 475202

    [113] ZhouWH,ChenJY, BaiPX,GuoSY, ZhangSL, Song X F, Tao L and Zeng H B 2019 Two-dimensional pnictogen for field-effect transistors Research 2019 1046329

    [114] Xu B et al 2023 Identifying, resolving, and quantifying anisotropy in ReS2 nanomechanical resonators Small 19 2300631

    [115] Wen T, LiJ,ZhangMD,JiaoCY, PeiSH,WangZHand Xia J 2022 Discerning the vibrational nature of ReS2 Raman modes using solid-angle-resolved Raman spectroscopy ACS Photonics 9 3557–62

    [116] Wen T, ZhangMD,LiJ,JiaoCY, PeiSH,WangZHand Xia J 2023 Orientation–polarization dependence of pressure-induced Raman anomalies in anisotropic 2D ReS2 Nanoscale Horiz. 8 516–21

    [117] Wen T, Li J, Deng Q Y, Jiao C Y, Zhang M D, Wu S, Lin L, Huang W, Xia J and Wang Z H 2022 Analyzing anisotropy in 2D rhenium disulfide using dichromatic polarized reflectance Small 18 2108028

    [118] Lin Z et al 2018 Solution-processable 2D semiconductors for high-performance large-area electronics Nature 562 254–8

    [119] Coleman J N et al 2011 Two-dimensional nanosheets produced by liquid exfoliation of layered materials Science 331 568–71

    [120] Masubuchi S, Morimoto M, Morikawa S, Onodera M, Asakawa Y, Watanabe K, Taniguchi T and Machida T 2018 Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices Nat. Commun. 9 1413

    [121] Sahoo P K, Memaran S, Xin Y, Balicas L and Gutiérrez H R 2018 One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy Nature 553 63–67

    [122] Chen W et al 2015 Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2 J. Am. Chem. Soc. 137 15632–5

    [123] Zhou H L et al 2015 Large area growth and electrical properties of p-type WSe2 atomic layers Nano Lett. 15 709–13

    [124] Zhou X, Gan L, Tian W, Zhang Q, Jin S, Li H, Bando Y, Golberg D and Zhai T 2015 Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors Adv. Mater. 27 8035–41

    [125] Kim M, Seo J, Kim J, Moon J S, Lee J, Kim J-H, Kang J and Park H 2021 High-crystalline monolayer transition metal dichalcogenides films for wafer-scale electronics ACS Nano 15 3038–46

    [126] Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C-J, Muller D and Park J 2015 High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity Nature 520 656–60

    [127] Yu H et al 2017 Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films ACS Nano 11 12001–7

    [128] LiTT et al 2021 Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire Nat. Nanotechnol. 16 1201–7

    [129] Ji Q et al 2013 Epitaxial monolayer MoS2 on mica with novel photoluminescence Nano Lett. 13 3870–7

    [130] MaKY et al 2022 Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111) Nature 606 88–93

    [131] Shi Y et al 2012 Van der Waals epitaxy of MoS2 layers using graphene as growth templates Nano Lett. 12 2784–91

    [132] Huet B, Bachu S, Alem N, Snyder D W and Redwing J M 2023 MOCVD of WSe2 crystals on highly crystalline single-and multi-layer CVD graphene Carbon 202 150–60

    [133] Shi J et al 2016 Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications Adv. Mater. 28 10664–72

    [134] Gong Y J et al 2017 Direct growth of MoS2 single crystals on polyimide substrates 2D Mater. 4 021028

    [135] Kim K S et al 2023 Non-epitaxial single-crystal 2D material growth by geometric confinement Nature 614 88–94

    [136] Yang H et al 2021 Wafer-scale synthesis of WS2 films with in situ controllable p-type doping by atomic layer deposition Research 2021 9862483

    [137] Xia Y P et al 2023 Wafer-scale single-crystalline MoSe2 and WSe2 monolayers grown by molecular-beam epitaxy at low-temperature—the role of island-substrate interaction and surface steps Nat. Sci. 3 20220059

    [138] Duan X D et al 2014 Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions Nat. Nanotechnol. 9 1024–30

    [139] Chen T, Hao G, Kou L, Wang C and Zhong J 2018 Controllable epitaxial growth of MoSe2-MoS2 lateral heterostructures with tunable electrostatic properties Nanotechnology 29 484003

    [140] Zubair A, Nourbakhsh A, Hong J-Y, Qi M, Song Y, Jena D, Kong J, Dresselhaus M and Palacios T 2017 Hot electron transistor with van der Waals base-collector heterojunction and high-performance GaN emitter Nano Lett. 17 3089–96

    [141] YipPS,ZouXB,ChoWC,Wu KLandLauKM2017 Transistors and tunnel diodes enabled by large-scale MoS2 nanosheets grown on GaN Semicond. Sci. Technol. 32 075011

    [142] Shim J et al 2016 Extremely large gate modulation in vertical graphene/WSe2 heterojunction barristor based on a novel transport mechanism Adv. Mater. 28 5293–9

    [143] WangZH,XuB,PeiSH,ZhuJK,Wen T, JiaoC,LiJ, Zhang M D and Xia J 2022 Recent progress in 2D van der Waals heterostructures: fabrication, properties, and applications Sci. China Inf. Sci. 65 211401

    [144] Chen Y Q et al 2021 Large-area freestanding Weyl semimetal WTe2 membranes Chin. Phys. Lett. 38 017101

    [145] Liao M et al 2020 Precise control of the interlayer twist angle in large scale MoS2 homostructures Nat. Commun. 11 2153

    [146] Lin Y C et al 2015 Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures Nat. Commun. 6 7311

    [147] Vu VT, Vu TTH,PhanTL,KangWT, KimYR, Tran M D, NguyenHT T, Lee Y H and Yu W J 2021 One-step synthesis of NbSe2/Nb-doped-WSe2 metal/doped-semiconductor van der Waals heterostructures for doping controlled ohmic contact ACS Nano 15 13031–40

    [148] FuQD et al 2018 One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2 Chem. Mater. 30 4001–7

    [149] Nugera F A, Sahoo P K, Xin Y, Ambardar S, Voronine D V, Kim U J, Han Y, Son H and Gutierrez H R 2022 Bandgap engineering in 2D lateral heterostructures of transition metal dichalcogenides via controlled alloying Small 18 e2106600

    [150] Seok H et al 2021 Low-temperature synthesis of wafer-scale MoS2-WS2 vertical heterostructures by single-step penetrative plasma sulfurization ACS Nano 15 707–18

    [151] Yang A et al 2019 Giant enhancement of photoluminescence emission in WS2-two-dimensional perovskite heterostructures Nano Lett. 19 4852–60

    [152] Jin J, Xiao T, Zhang Y-F, Zheng H, Wang H W, Wang R, Gong Y S, He B B,LiuX H and Zhou K 2021 Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion Nanoscale 13 19740–70

    [153] Park H, Shin G H, Lee K J and Choi S-Y 2020 Probing temperature-dependent interlayer coupling in a MoS2/h-BN heterostructure Nano Res. 13 576–82

    [154] Radisavljevic B, Whitwick M B and Kis A 2011 Integrated circuits and logic operations based on single-layer MoS2 ACS Nano 5 9934–8

    [155] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS2 transistors Nat. Nanotechnol. 6 147–50

    [156] Wang B et al 2021 Monolayer MoS2 synaptic transistors for high-temperature neuromorphic applications Nano Lett. 21 10400–8

    [157] Qin W J, Lv Y W, Xia Z, Liao L and Jiang C Z 2022 Van der Waals heterostructure tunnel FET with potential modulation beyond junction region Sci. China Inf. Sci. 65 209401

    [158] Zhang X et al 2021 Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions Nat. Commun. 12 1522

    [159] Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X and Ye P D 2014 Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode ACS Nano 8 8292–9

    [160] Fan S,Vu QA,LeeS,PhanTL,HanG,KimY-M,Yu WJ and Lee Y H 2019 Tunable negative differential resistance in van der waals heterostructures at room temperature by tailoring the interface ACS Nano 13 8193–201

    [161] Shim J et al 2016 Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic Nat. Commun. 7 13413

    [162] Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y and Duan X 2014 Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes Nano Lett. 14 5590–7

    [163] AnXH,ZhangYH,Yu YF, ZhaoWW, YangYT, Niu X H,Luo X, Lu J P, WangJ L and Ni Z H 2022 Efficient charge transfer in WS2/WxMo1.xS2 heterostructure empowered by energy level hybridization Sci. China Inf. Sci. 66 122404

    [164] Svatek S A et al 2021 High open-circuit voltage in transition metal dichalcogenide solar cells Nano Energy 79 105427

    [165] Nassiri Nazif K et al 2021 High-specific-power flexible transition metal dichalcogenide solar cells Nat. Commun. 12 7034

    [166] Zhu W K et al 2022 Large room-temperature magnetoresistance in van der Waals ferromagnet/semiconductor junctions Chin. Phys. Lett. 39 128501

    [167] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Unconventional superconductivity in magic-angle graphene superlattices Nature 556 43–50

    [168] Shen S W et al 2022 Coexistence of quasi-two-dimensional superconductivity and tunable kondo lattice in a van der Waals superconductor Chin. Phys. Lett. 39 077401

    [169] Xu B et al 2022 Nanomechanical resonators: toward atomic scale ACS Nano 16 15545–85

    [170] Zhu J K et al 2022 Frequency scaling, elastic transition, and broad-range frequency tuning in WSe2 nanomechanical resonators Nano Lett. 22 5107–13

    [171] Mannix A J, Kiraly B, Hersam M C and Guisinger N P 2017 Synthesis and chemistry of elemental 2D materials Nat. Rev. Chem. 1 0014

    [172] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D and Ye P D 2014 Phosphorene: an unexplored 2D semiconductor with a high hole mobility ACS Nano 8 4033–41

    [173] Hanlon D et al 2015 Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics Nat. Commun. 6 8563

    [174] Smith J B, Hagaman D and Ji H-F 2016 Growth of 2D black phosphorus film from chemical vapor deposition Nanotechnology 27 215602

    [175] LiXS et al 2015 Synthesis of thin-film black phosphorus on a flexible substrate 2D Mater. 2 031002

    [176] Zhao G, Wang T L, Shao Y L, Wu Y Z, Huang B B and Hao X P 2017 A novel mild phase-transition to prepare black phosphorus nanosheets with excellent energy applications Small 13 1602243

    [177] Zhang J L et al 2016 Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus Nano Lett. 16 4903–8

    [178] Wu Z H, Lyu Y X, Zhang Y, Ding R, Zheng B N, Yang Z B, Lau S P, Chen X H and Hao J H 2021 Large-scale growth of few-layer two-dimensional black phosphorus Nat. Mater. 20 1203–9

    [179] Han R Y, Feng S, Sun D-M and Cheng H-M 2021 Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus Sci. China Inf. Sci. 64 140402

    [180] Liu Y et al 2017 Highly efficient and air-stable infrared photodetector based on 2D layered graphene–black phosphorus heterostructure ACS Appl. Mater. Interfaces 9 36137–45

    [181] Sinha S, Takabayashi Y, Shinohara H and Kitaura R 2016 Simple fabrication of air-stable black phosphorus heterostructures with large-area hBN sheets grown by chemical vapor deposition method 2D Mater. 3 035010

    [182] Zeng J, Xu L, Dong K J, Yang K and Wang L-L 2021 Multiple heterojunction system of boron nitride-graphene/black phosphorene as highly efficient solar cell Adv. Theor. Simul. 4 2100169

    [183] Sultana N, Degg A, Upadhyaya S, Nilges T and Sen Sarma N 2022 Synthesis, modification, and application of black phosphorus, few-layer black phosphorus (FLBP), and phosphorene: a detailed review Mater. Adv. 3 5557–74

    [184] LiLK,Yu YJ,Ye GJ,GeQQ,OuXD,Wu H,FengDL, Chen X H and Zhang Y B 2014 Black phosphorus field-effect transistors Nat. Nanotechnol. 9 372–7

    [185] LiuX,WangWH,YangF, FengSP, HuZL,LuJPand Ni Z H 2021 Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector Sci. China Inf. Sci. 64 140404

    [186] Zhu W, Yogeesh M N, Yang S, Aldave S H, Kim J-S, Sonde S, Tao L, Lu N and Akinwande D 2015 Flexible black phosphorus ambipolar transistors, circuits and AM demodulator Nano Lett. 15 1883–90

    [187] Kasap S O and Capper P 2006 Springer Handbook of Electronic and Photonic Materials (Springer)

    [188] Uchida K, Watanabe H, Kinoshita A, Koga J, Numata T and Takagi S 2002 Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm Int. Electron Devices Meeting Digest (IEEE) pp 47–50

    [189] Wei L, Miao Y, Ding Y F, Li C, Lu H and Chen Y-F 2020 Ultra high hole mobility in Ge films grown directly on Si (100) through interface modulation J. Cryst. Growth 548 125838

    [190] Yu X, Kang J, Takenaka M and Takagi S 2015. Experimental study on carrier transport properties in extremely-thin body Ge-on-insulator (GOI) p-MOSFETs with GOI thickness down to 2 nm Proc. 2015 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 2.2.1–4

    [191] Nakwaski W 1995 Effective masses of electrons and heavy holes in GaAs, InAs, AlAs and their ternary compounds Physica B 210 1–25

    [192] Sakai S, Soga T and Umeno M 1986 Band-gap energy and stress of GaAs grown on Si by MOCVD Jpn. J. Appl. Phys. 25 1680–3

    [193] Lovejoy M L, Melloch M R and Lundstrom M S 1995 Temperature dependence of minority and majority carrier mobilities in degenerately doped GaAs Appl. Phys. Lett. 67 1101–3

    [194] Nag B R and Dutta G M 1978 Electron mobility in InP J. Phys. C: Solid State Phys. 11 119–23

    [195] Podor B 2008 Hole mobility in InP and GaSb Proc. 31st Int. Spring Seminar on Electronics Technology (IEEE) pp 201–4

    [196] Bennett B R, Tinkham B P, Boos J B, Lange M D and Tsai R 2004 Materials growth for InAs high electron mobility transistors and circuits J. Vac. Sci. Technol. B 22 688–94

    [197] Yano M, Nogami M, Matsushima Y and Kimata M 1977 Molecular beam epitaxial growth of InAs Jpn. J. Appl. Phys. 16 2131–7

    [198] Kaplar R J, Allerman A A, Armstrong A M, Crawford M H, Dickerson J R, Fischer A J, Baca A G and Douglas E A 2017 Review-ultra-wide-bandgap algan power electronic devices ECS J. Solid State Sci. Technol. 6 Q3061

    [199] Chen C C et al 2022 Hole mobility behavior in Al-gradient polarization-induced p-type AlGaN grown on GaN template Appl. Phys. Lett. 120 022103

    [200] Poncé S, Jena D and Giustino F 2019 Hole mobility of strained GaN from first principles Phys. Rev. B 100 085204

    [201] Persson C, Sernelius B E, da Silva A F, Ahuja R and Johansson B 2001 Effective electron and hole masses in intrinsic and heavily n-type doped GaN and AlN J. Phys.: Condens. Matter 13 8915–22

    [202] Taniyasu Y, Kasu M and Makimoto T 2006 Increased electron mobility in n-type Si-doped AlN by reducing dislocation density Appl. Phys. Lett. 89 182112

    [203] Tran NH,LeBH,ZhaoSRandMiZT2017On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures Appl. Phys. Lett. 110 032102

    [204] WangJX,SunDZ,WangXL,LiJM,ZengYP, HouXand Lin L Y 2001 High-quality GaN grown by gas-source MBE J. Cryst. Growth 227 386–9

    [205] Wu YZ,TongJW, RuanLX,LuoFF, LiuGH,ZhangR, HanX L,Zhang Y L, Tian F B and ZhangX M 2021 N-type diamond semiconductor induced by co-doping selenium and boron Comput. Mater. Sci. 196 110515

    [206] Vavilov V S and Konorova E A 1976 Semiconducting diamonds Sov. Phys.—Usp. 19 301–16

    [207] He H Y, Blanco M A and Pandey R 2006 Electronic and thermodynamic properties of β-Ga2O3 Appl. Phys. Lett. 88 261904

    [208] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates Appl. Phys. Lett. 100 013504

    [209] Iwata K, Fons P, Niki S, Yamada A, Matsubara K, Nakahara K and Takasu H 2000 Improvement of electrical properties in ZnO thin films grown by radical source(RS)-MBE Phys. Status Solidi a 180 287–92

    [210] Srivastava S and Mohapatra Y N 2021 MoS2|ZnO isotype heterostructure diode: carrier transport and band alignment J. Appl. Phys. 129 205702

    [211] Li Y, Yang S X and Li J B 2014 Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field J. Phys. Chem. C 118 23970–6

    [212] Ribeiro H B, Pimenta M A and de Matos C J S 2018 Raman spectroscopy in black phosphorus J. Raman Spectrosc. 49 76–90

    [213] Li X, Yu Z, Xiong X, Li T, Gao T, Wang R, Huang R and Wu Y 2019 High-speed black phosphorus field-effect transistors approaching ballistic limit Sci. Adv. 5 eaau3194

    [214] Tao J et al 2015 Mechanical and electrical anisotropy of few-layer black phosphorus ACS Nano 9 11362–70

    [215] Rudenko A N, Brener S and Katsnelson M I 2016 Intrinsic charge carrier mobility in single-layer black phosphorus Phys. Rev. Lett. 116 246401

    [216] Sun Y H, Wang X J, Zhao X-G, Shi Z M and Zhang L J 2018 First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides J. Semiconduct. 39 072001

    [217] Kim B S, Rhim J-W, Kim B, Kim C and Park S R 2016 Determination of the band parameters of bulk 2H-MX2 (M = Mo,W; X = S,Se) by angle-resolved photoemission spectroscopy Sci. Rep. 6 36389

    [218] Kumar A and Ahluwalia P K 2012 Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo,W; X = S,Se, Te) from ab-initio theory: new direct band gap semiconductors Eur. Phys. J. B 85 186

    [219] Kuc A, Zibouche N and Heine T 2011 Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 Phys. Rev. B 83 245213

    [220] Zhao J, Li N, Yu H, Wei Z, Liao M, Chen P, Wang S, Shi D, Sun Q and Zhang G 2017 Highly sensitive MoS2 humidity sensors array for noncontact sensation Adv. Mater. 29 1702076

    [221] Dagan R, Vaknin Y, Henning A, Shang J Y, Lauhon L J and Rosenwaks Y 2019 Two-dimensional charge carrier distribution in MoS2 monolayer and multilayers Appl. Phys. Lett. 114 101602

    [222] Liu L T, Kumar S B, Ouyang Y and Guo J 2011 Performance limits of monolayer transition metal dichalcogenide transistors IEEE Trans. Electron Devices 58 3042–7

    [223] RenP, BaileyTP, PageAA,YangQX,LvTandXuGY 2021 Fine-grained polycrystalline MoTe2 with enhanced thermoelectric properties through iodine doping J. Mater. Sci.: Mater. Electron. 32 20093–103

    [224] Xiao Y, He S, Li M, Sun W, Wu Z, Dai W and Lu C 2021 Structural evolution and phase transition mechanism of MoSe2 under high pressure Sci. Rep. 11 22090

    [225] Jin Z H, Li X D, Mullen J T and Kim K W 2014 Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides Phys. Rev. B 90 045422

    [226] Larentis S, Fallahazad B and Tutuc E 2012 Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers Appl. Phys. Lett. 101 223104

    [227] Ruppert C, Aslan B and Heinz T F 2014 Optical properties and band gap of single-and few-layer MoTe2 crystals Nano Lett. 14 6231–6

    [228] Qu D, Liu X, Huang M, Lee C, Ahmed F, Kim H, Ruoff R S, Hone J and Yoo W J 2017 Carrier-type modulation and mobility improvement of thin MoTe2 Adv. Mater. 29 1606433

    [229] Pai H C and Wu Y R 2022. Study of carrier scattering and mobility in monolayer MoTe2 and WTe2 by first-principle analysis Proc. 2022 Int. Symp. on VLSI Technology, Systems and Applications (VLSI-TSA) (IEEE) pp 1–2

    [230] Iqbal M W, Amin A, Kamran M A, Ateeq H, Elahi E, Hussain G, Azam S, Aftab S, Alharbi T and Majid A 2019 Tailoring the electrical properties of MoTe2 field effect transistor via chemical doping Superlattices Microstruct. 135 106247

    [231] Wang Y, Sohier T, Watanabe K, Taniguchi T, Verstraete M J and Tutuc E 2021 Electron mobility in monolayer WS2 encapsulated in hexagonal boron-nitride Appl. Phys. Lett. 118 102105

    [232] Cao Q, Dai Y-W, Xu J, Chen L, Zhu H, Sun Q-Q and Zhang D W 2017 Realizing stable p-type transporting in two-dimensional WS2 films ACS Appl. Mater. Interfaces 9 18215–21

    [233] Reshak A H and Auluck S 2003 Electronic and optical properties of 2H-WSe2 intercalated with copper Phys. Rev. B 68 195107

    [234] Konar R, Perelshtein I, Teblum E, Telkhozhayeva M, Tkachev M, Richter J J, Cattaruzza E, Pietropolli Charmet A, Stoppa P and Noked M 2020 Scalable synthesis of few-layered 2D tungsten diselenide (2H-WSe2) nanosheets directly grown on tungsten (W) foil using ambient-pressure chemical vapor deposition for reversible Li-ion storage ACS Omega 5 19409–21

    [235] Bilc D I, Benea D, Pop V, Ghosez P and Verstraete M J 2021 Electronic and thermoelectric properties of transition-metal dichalcogenides J. Phys. Chem. C 125 27084–97

    [236] Rasmussen F A and Thygesen K S 2015 Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides J. Phys. Chem. C 119 13169–83

    [237] Liu W, Kang J, Sarkar D, Khatami Y, Jena D and Banerjee K 2013 Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors Nano Lett. 13 1983–90

    [238] Allain A and Kis A 2014 Electron and hole mobilities in single-layer WSe2 ACS Nano 8 7180–5

    [239] Lee C-H, Silva E C, Calderin L, Nguyen M A T, Hollander M J, Bersch B, Mallouk T E and Robinson J A 2015 Tungsten ditelluride: a layered semimetal Sci. Rep. 5 10013

    [240] LvHY, LuWJ,ShaoDF, LiuY, Tan SGandSunYP2015 Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer Europhys. Lett. 110 37004

    [241] Hu L, Kang L, Yang J, Huang B and Liu F 2018 Significantly enhanced magnetoresistance in monolayer WTe2 via heterojunction engineering: a first-principles study Nanoscale 10 22231–6

    [242] Zhao Y et al 2017 High-electron-mobility and air-stable 2D layered PtSe2 FETs Adv. Mater. 29 1604230

    [243] MengXH,ShenYQ,LiuJJ,LvLL,YangX,Gao X, Zhou M, Wang X Y, Zheng Y D and Zhou Z X 2021 The PtSe2/GaN van der Waals heterostructure photocatalyst with type II alignment: a first-principles study Appl. Catal. A: Gen. 624 118332

    [244] HuangX,XuL,LiHT, TangSH,MaZL,ZengJ, Xiong F L, Li Z Q and Wang L-L 2021 Two-dimensional PtSe2/hBN vdW heterojunction as photoelectrocatalyst for the solar-driven oxygen evolution reaction: a first principles study Appl. Surf. Sci. 570 151207

    [245] Wang Y et al 2015 Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt Nano Lett. 15 4013–8

    [246] Yao W et al 2017 Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film Nat. Commun. 8 14216

    [247] Absor M A U, Santoso I, Abraha H, Abraha K, Kotaka H, Ishii F and Saito M 2018 Strong Rashba effect in the localized impurity states of halogen-doped monolayer PtSe2 Phys. Rev. B 97 205138

    [248] Fan S, Yun S J, Yu W J and Lee Y H 2020 Tailoring quantum tunneling in a vanadium-doped WSe2/SnSe2 heterostructure Adv. Sci. 7 1902751

    [249] Rahman A, Kim H J, Noor-A-Alam M and Shin Y-H 2019 A theoretical study on tuning band gaps of monolayer and bilayer SnS2 and SnSe2 under external stimuli Curr. Appl. Phys. 19 709–14

    [250] Shafique A, Samad A and Shin Y-H 2017 Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: a first principles study Phys. Chem. Chem. Phys. 19 20677–83

    [251] Román R J P et al 2021 Band gap measurements of monolayer h-BN and insights into carbon-related point defects 2D Mater. 8 044001

    [252] HuangZY, HeCY, QiX,YangH,LiuWL,WeiXL, Peng X Y and Zhong J X 2014 Band structure engineering of monolayer MoS2 on h-BN: first-principles calculations J. Phys. D: Appl. Phys. 47 075301

    [253] Erohin S V and Sorokin P B 2022 Edges in bilayered h-BN: insights into the atomic structure Nanoscale 14 14155–60

    [254] Thomas S, Manju M S, Ajith K M, Lee S U and Zaeem M A 2020 Strain-induced work function in h-BN and BCN monolayers Physica E 123 114180

    [255] Cooper D R et al 2012 Experimental review of graphene ISRN Condens. Matter Phys. 2012 1–56

    [256] Tiras E, Ardali S, Tiras T, Arslan E, Cakmakyapan S, Kazar O, Hassan J, Janzen E and Ozbay E 2013 Effective mass of electron in monolayer graphene: electron-phonon interaction J. Appl. Phys. 113 043708

    [257] Schumann T, Dubslaff M, Oliveira M H, Hanke M, Lopes J M J and Riechert H 2014 Effect of buffer layer coupling on the lattice parameter of epitaxial graphene on SiC(0001) Phys. Rev. B 90 041403

    [258] Fraj N, Saidi I, Ben Radhia S and Boujdaria K 2008 Band parameters of AlAs, Ge and Si in the 34-band k·p model Semicond. Sci. Technol. 23 085006

    [259] Cooper J A 1993 Recent advances in GaAs dynamic memories Adv. Electron. Electron Phys. 86 1–79

    [260] Hamada H, Tsutsumi T, Sugiyama H, Matsuzaki H, Song H J, Itami G, Fujimura T, Abdo I, Okada K and Nosaka H 2019 Millimeter-wave InP device technologies for ultra-high speed wireless communications toward beyond 5G Proc. 2019 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 9.2.1–4

    [261] Casady J B and Johnson R W 1996 Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review Solid-State Electron. 39 1409–22

    [262] Flack T J, Pushpakaran B N and Bayne S B 2016 GaN technology for power electronic applications: a review J. Electron. Mater. 45 2673–82

    [263] Kang H K, Park S-H, Jun D H, Kim C Z, Song K M, Park W, Ko C G and Kim H 2011 Te doping in the GaAs tunnel junction for GaInP/GaAs tandem solar cells Semicond. Sci. Technol. 26 075009

    [264] Kato Y, Kitamura S, Hiramatsu K and Sawaki N 1994 Selective growth of wurtzite GaN and AlxGa1.xN on GaN sapphire substrates by metalorganic vapor-phase epitaxy J. Cryst. Growth 144 133–40

    [265] Awasthi H, Kumar N, Purwar V, Gupta A, Varshney V and Rai S 2022 In Recent Trends in Electronics and Communication eds A Dhawan, V S Tripathi, K V Arya and K Naik (Springer) pp 137–43

    [266] Tripathi S, Gupta N, Tripathi P and Chaujar R 2019 GaN silicon-on-insulator (SOI) n-channel FinFET for high-performance low power applications Proc. 2019 IEEE 14th Nanotechnol. Materials and Devices Conf. (NMDC) (IEEE) pp 1–4

    [267] Das D 1998 Quantum confinement effects in nano-silicon thin films Solid State Commun. 108 983–7

    [268] Nakamura Y, Watanabe K, Fukuzawa Y and Ichikawa M 2005 Observation of the quantum-confinement effect in individual Ge nanocrystals on oxidized Si substrates using scanning tunneling spectroscopy Appl. Phys. Lett. 87 133119

    [269] Le Quang T, Cherkez V, Nogajewski K, Potemski M, Dau M T, Jamet M, Mallet P and Veuillen J-Y 2017 Scanning tunneling spectroscopy of van der Waals graphene/semiconductor interfaces: absence of Fermi level pinning 2D Mater. 4 035019

    [270] Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M and Banerjee K 2015 A subthermionic tunnel field-effect transistor with an atomically thin channel Nature 526 91–95

    [271] Miao J S et al 2022 Heterojunction tunnel triodes based on two-dimensional metal selenide and three-dimensional silicon Nat. Electron. 5 744–51

    [272] Ruzmetov D et al 2016 Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride ACS Nano 10 3580–8

    [273] Liu C-Y, Huang H-C, Choi W S, Kim J, Jung K, Sun W, Tansu N, Zhou W D, Kuo H-C and Li X L 2020 Hybrid integration of n-MoS2/p-GaN diodes by quasi-van der Waals epitaxy ACS Appl. Electron. Mater. 2 419–25

    [274] Liang F-X, Zhao X-Y, Jiang J-J, Hu J-G, Xie W-Q, Lv J, Zhang Z-X, Wu D and Luo L-B 2019 Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2 /pyramid Si heterojunction Small 15 e1903831

    [275] Wu D, Guo C, Wang Z, Ren X, Tian Y, Shi Z, Lin P, Tian Y, Chen Y and Li X 2021 A defect-induced broadband photodetector based on WS2/pyramid Si 2D/3D mixed-dimensional heterojunction with a light confinement effect Nanoscale 13 13550–7

    [276] Kuppadakkath A et al 2022 Direct growth of monolayer MoS2 on nanostructured silicon waveguides Nanophotonics 11 4397–408

    [277] Chen M-C et al 2014 Hybrid Si/TMD 2D electronic double channels fabricated using solid CVD few-layer-MoS2 stacking for Vth matching and CMOS-compatible 3DFETs Proc. 2014 IEEE Int. Electron Devices Meeting (IEEE) pp 33.35.31–4

    [278] Yim C et al 2014 Heterojunction hybrid devices from vapor phase grown MoS2 Sci. Rep. 4 5458

    [279] Chowdhury R K, Maiti R, Ghorai A, Midya A and Ray S K 2016 Novel silicon compatible p-WS2 2D/3D heterojunction devices exhibiting broadband photoresponse and superior detectivity Nanoscale 8 13429–36

    [280] Kumar G, Prakash N, Singh M, Chakravorty A, Kabiraj D, Singh S P, Pal P and Khanna S P 2019 Solution-processed-2D on 3D heterojunction UV-visible photodetector for low-light applications ACS Appl. Electron. Mater. 1 1489–97

    [281] Patel M, Pataniya P M, Late D J and Sumesh C K 2021 Plasmon-enhanced photoresponse in Ag-WS2/Si heterojunction Appl. Surf. Sci. 538 148121

    [282] Wang L, Jie J S, Shao Z B, Zhang Q, Zhang X H, Wang Y M, Sun Z and Lee S-T 2015 MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors Adv. Funct. Mater. 25 2910–9

    [283] Xie C, Zeng L, Zhang Z, Tsang Y-H, Luo L and Lee J-H 2018 High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate Nanoscale 10 15285–93

    [284] Singh D K, Pant R, Roul B, Chowdhury A M, Nanda K K and Krupanidhi S B 2020 Temperature-dependent electrical transport and optoelectronic properties of SnS2/p-Si heterojunction ACS Appl. Electron. Mater. 2 2155–63

    [285] Shawkat M S, Chowdhury T A, Chung H-S, Sattar S, Ko T-J, Larsson J A and Jung Y 2020 Large-area 2D PtTe2/silicon vertical-junction devices with ultrafast and high-sensitivity photodetection and photovoltaic enhancement by integrating water droplets Nanoscale 12 23116–24

    [286] Wu D, Xu M, Zeng L, Shi Z, Tian Y, Li X J, Shan C-X and Jie J 2022 In situ fabrication of PdSe2/GaN schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio ACS Nano 16 5545–55

    [287] Shawkat M S, Chung H-S, Dev D, Das S, Roy T and Jung Y 2019 Two-dimensional/three-dimensional schottky junction photovoltaic devices realized by the direct CVD growth of vdW 2D PtSe2 layers on silicon ACS Appl. Mater. Interfaces 11 27251–8

    [288] Son S B, Kim Y, Cho B, Choi C-J and Hong W-K 2018 Temperature-dependent electronic charge transport characteristics at MoS2/p-type Ge heterojunctions J. Alloys Compd. 757 221–7

    [289] Hasani A, Van Lee Q, Tekalgne M, Choi M-J, Lee T H, Jang H W and Kim S Y 2019 Direct synthesis of two-dimensional MoS2 on p-type Si and application to solar hydrogen production NPG Asia Mater. 11 47

    [290] Hasani A, Van Le Q, Tekalgne M, Choi M-J, Choi S, Lee TH, Kim H, Ahn S H, Jang H WandKimS Y 2019 Fabrication of a WS2/p-Si heterostructure photocathode using direct hybrid thermolysis ACS Appl. Mater. Interfaces 11 29910–6

    [291] Xu K, Cai Y H and Zhu W J 2018 Esaki diodes based on 2D/3D heterojunctions IEEE Trans. Electron Devices 65 4155–9

    [292] Kim Y, Kwon S, Seo E-J, Nam J H, Jang H Y, Kwon S-H, Kwon J-D, Kim D-W and Cho B 2018 Facile fabrication of a two-dimensional TMD/Si heterojunction photodiode by atmospheric-pressure plasma-enhanced chemical vapor deposition ACS Appl. Mater. Interfaces 10 36136–43

    [293] Zhang K et al 2017 Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides Nanoscale 10 336–41

    [294] Pendurthi R, Jayachandran D, Kozhakhmetov A, Trainor N, Robinson J A, Redwing J M and Das S 2022 Heterogeneous integration of atomically thin semiconductors for non-von neumann CMOS Small 18 e2202590

    [295] Baidoo J K et al 2022 Sequential growth of vertical transition-metal dichalcogenide heterostructures on rollable aluminum foil ACS Nano 16 8851–9

    [296] Ruzmetov D et al 2018 Van der Waals interfaces in epitaxial vertical metal/2D/3D semiconductor heterojunctions of monolayer MoS2 and GaN 2D Mater. 5 045016

    [297] Lee C H, Krishnamoorthy S, Paul P K, O’Hara D J, Brenner M R, Kawakami R K, Arehart A R and Rajan S 2017 Large-area SnSe2/GaN heterojunction diodes grown by molecular beam epitaxy Appl. Phys. Lett. 111 202101

    [298] Seredy′ zek R, nski B, Ogorza.ek Z, Zajkowska W, Bo˙ Tokarczyk M, Suffczy′nski J, Kret S, Sadowski J, Gryglas-Borysiewicz M and Pacuski W 2021 Molecular beam epitaxy of a 2D material nearly lattice matched to a 3D substrate: NiTe2 on GaAs Cryst. Growth Des. 21 5773–9

    [299] Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B and Li H 2020 Van der Waals epitaxy of III-Nitride semiconductors based on 2D materials for flexible applications Adv. Mater. 32 e1903407

    [300] Vuong P et al 2020 Control of the mechanical adhesion of III–V materials grown on layered h-BN ACS Appl. Mater. Interfaces 12 55460–6

    [301] Kim H et al 2021 Impact of 2D-3D heterointerface on remote epitaxial interaction through graphene ACS Nano 15 10587–96

    [302] Liu Y, Guo J, Zhu E, Wang P, Gambin V, Huang Y and Duan X 2019 Maximizing the current output in self-aligned graphene-InAs-metal vertical transistors ACS Nano 13 847–54

    [303] Ma C-H, Lu L-S, Song H L, Chen J-W, Wu P-C, Wu C-L, Huang R, Chang W-H and Chu Y-H 2021 Remote growth of oxide heteroepitaxy through MoS2 Appl. Mater. 9 051115

    [304] Schram T et al 2021 High yield and process uniformity for 300 mm integrated WS2 FETs Proc. 2021 Symp. on VLSI Technology (IEEE) pp 1–2

    [305] Periyanagounder D, Gnanasekar P, Varadhan P, He J-H and Kulandaivel J 2018 High performance, self-powered photodetectors based on a graphene/silicon Schottky junction diode J. Mater. Chem. C 6 9545–51

    [306] WangJN,WangHY, ChenQ,QiLG,ZhengZQ,HuoNJ, Gao W, Wang X Z and Li J B 2022 A Weyl semimetal WTe2/GaAs 2D/3D Schottky diode with high rectification ratio and unique photocurrent behavior Appl. Phys. Lett. 121 103502

    [307] Yang H, Heo J, Park S, Song H J, Seo D H, Byun K-E, Kim P, Yoo I, Chung H-J and Kim K 2012 Graphene barristor, a triode device with a gate-controlled Schottky barrier Science 336 1140–3

    [308] Liu Y, Zhou H, Cheng R, Yu W, Huang Y and Duan X 2014 Highly flexible electronics from scalable vertical thin film transistors Nano Lett. 14 1413–8

    [309] Vaziri S, Lupina G, Henkel C, Smith A D, Ostling M, Dabrowski J, Lippert G, Mehr W and Lemme M C 2013 A graphene-based hot electron transistor Nano Lett. 13 1435–9

    [310] Vaziri S, Belete M, Dentoni Litta E, Smith A D, Lupina G, Lemme M C and Ostling M 2015 Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors Nanoscale 7 13096–104

    [311] Torres C M Jr et al 2015 High-current gain two-dimensional MoS2-base hot-electron transistors Nano Lett. 15 7905–12

    [312] Liang B-W, Chang W-H, Lin H-Y, Chen P-C, Zhang Y-T, Simbulan K B, Li K-S, Chen J-H, Kuan C-H and Lan Y-W 2021 High-frequency graphene base hot-electron transistor ACS Nano 15 6756–64

    [313] Lan Y-W et al 2016 Dual-mode operation of 2D material-base hot electron transistors Sci. Rep. 6 32503

    [314] Jeong H et al 2015 Semiconductor-insulator-semiconductor diode consisting of monolayer MoS2, h-BN, and GaN heterostructure ACS Nano 9 10032–8

    [315] Miao J et al 2020 Gate-tunable semiconductor heterojunctions from 2D/3D van der Waals interfaces Nano Lett. 20 2907–15

    [316] Nishiguchi K, Castellanos-Gomez A, Yamaguchi H, Fujiwara A, van der Zant H S J and Steele G A 2015 Observing the semiconducting band-gap alignment of MoS2 layers of different atomic thicknesses using a MoS2/SiO2/Si heterojunction tunnel diode Appl. Phys. Lett. 107 053101

    [317] Krishnamoorthy S, Lee E W, Lee C H, Zhang Y W, McCulloch W D, Johnson J M, Hwang J, Wu Y Y and Rajan S 2016 High current density 2D/3D MoS2/GaN Esaki tunnel diodes Appl. Phys. Lett. 109 183505

    [318] Jia R D, Huang Q Q and Huang R 2019 Vertical SnS2/Si heterostructure for tunnel diodes Sci. China Inf. Sci. 63 122401

    [319] Giannazzo F, Panasci S E, Schiliro E, Roccaforte F, Koos A, Nemeth M and Pecz B 2022 Esaki diode behavior in highly uniform MoS2/silicon carbide heterojunctions Adv. Mater. Interfaces 9 2200915

    [320] BiJH,ZouXM,LvYW, LiGL,LiuXQ,LiuY, Yu T, Yang Z Y and Liao L 2020 InGaZnO tunnel and junction transistors based on vertically stacked black phosphorus/InGaZnO heterojunctions Adv. Electron. Mater. 6 2000291

    [321] Choi W, Ahn J, Kim K-T, Jin H-J, Hong S, Hwang D K and Im S 2021 Ambipolar channel p-TMD/n-Ga2O3 junction field effect transistors and high speed photo-sensing in TMD channel Adv. Mater. 33 e2103079

    [322] Lee C H, Park Y, Youn S, Yeom M J, Kum H S, Chang J, Heo J and Yoo G 2022 Design of p-WSe2/n-Ge heterojunctions for high-speed broadband photodetectors Adv. Funct. Mater. 32 2107992

    [323] Seo W et al 2022 MoS2/p-Si heterojunction with graphene interfacial layer for high performance 940 nm infrared photodetector Appl. Surf. Sci. 604 154485

    [324] Lan C, Li C, Wang S, He T, Jiao T, Wei D, Jing W, Li L and Liu Y 2016 Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction ACS Appl. Mater. Interfaces 8 18375–82

    [325] LuZJ,XuY, Yu YQ,XuKW, MaoJ,XuGB,MaYM, Wu D and Jie J S 2020 Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition Adv. Funct. Mater. 30 1907951

    [326] Chauhan P, Patel A B, Solanki G K, Patel K D, Pathak V M, Sumesh C K, Narayan S and Jha P K 2021 Rhenium substitutional doping for enhanced photoresponse of n-SnSe2/p-Si heterojunction based tunable and high-performance visible-light photodetector Appl. Surf. Sci. 536 147739

    [327] Hwang A et al 2021 Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure Sci. Adv. 7 eabj2521

    [328] Wu D et al 2021 Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation ACS Nano 15 10119–29

    [329] Chen W J, Liang R R, Zhang S Q, Liu Y, Cheng W J, Sun C C and Xu J 2019 Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure Nano Res. 13 127–32

    [330] LiKL,WangWJ,LiJF, JiangWX,FengMandHeY 2020 High-responsivity, self-driven photodetectors based on monolayer WS2/GaAs heterojunction Photon. Res. 8 1368–74

    [331] Jain S K et al 2021 2D/3D hybrid of MoS2/GaN for a high-performance broadband photodetector ACS Appl. Electron. Mater. 3 2407–14

    [332] Wang Y H et al 2021 2021. p-GaSe/n-Ga2O3 van der Waals heterostructure photodetector at solar-blind wavelengths with ultrahigh responsivity and detectivity ACS Photonics 8 2256–64

    [333] Guo N et al 2020 Light-driven WSe2-ZnO junction field-effect transistors for high-performance photodetection Adv. Sci. 7 1901637

    [334] Riazimehr S, Kataria S, Bornemann R, Haring Bolivar P, Ruiz F J G, Engstrom O, Godoy A and Lemme M C 2017 High photocurrent in gated graphene-silicon hybrid photodiodes ACS Photonics 4 1506–14

    [335] Yim C et al 2016 High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature ACS Nano 10 9550–8

    [336] Aftab S, Samiya M, Iqbal M W, Kabir F, Iqbal M Z and Shehzad M A 2022 Platinum disulfide (PtS2) and silicon pyramids: efficient 2D/3D heterojunction tunneling and breakdown diodes ACS Appl. Electron. Mater. 4 917–24

    [337] Yao J, Zheng Z and Yang G 2018 Ultrasensitive 2D/3D heterojunction multicolor photodetectors: a synergy of laterally and vertically aligned 2D layered materials ACS Appl. Mater. Interfaces 10 38166–72

    [338] Lopez-Sanchez O, Alarcon Llado E, Koman V, Fontcuberta I Morral A, Radenovic A and Kis A 2014 Light generation and harvesting in a van der Waals heterostructure ACS Nano 8 3042–8

    [339] Ye Y, Ye Z L, Gharghi M, Zhu H Y, Zhao M, Wang Y, Yin X B and Zhang X 2014 Exciton-dominant electroluminescence from a diode of monolayer MoS2 Appl. Phys. Lett. 104 193508

    [340] Wang C Y, Kang Z, Zheng Z, Zhang Y N, Zhang L W, Su J, Zhang Z, Liu N S, Li L Y and Gao Y H 2019 Monolayer MoSe2/NiO van der Waals heterostructures for infrared light-emitting diodes J. Mater. Chem. C 7 13613–21

    [341] Yang P et al 2021 Large-area monolayer MoS2 nanosheets on GaN substrates for light-emitting diodes and valley-spin electronic devices ACS Appl. Nano Mater. 4 12127–36

    [342] Li D, Cheng R, Zhou H, Wang C, Yin A, Chen Y, Weiss N O, Huang Y and Duan X 2015 Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide Nat. Commun. 6 7509

    [343] Tsai M-L, Su S-H, Chang J-K, Tsai D-S, Chen C-H, Wu C-I, Li L-J, Chen L-J and He J-H 2014 Monolayer MoS2 heterojunction solar cells ACS Nano 8 8317–22

    [344] Wang P et al 2015 Tunable graphene/indium phosphide heterostructure solar cells Nano Energy 13 509–17

    [345] HaoLZ,GaoW, LiuYJ,HanZD,XueQZ,GuoWY, Zhu J and Li Y R 2015 High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells Nanoscale 7 8304–8

    [346] Meng J-H, Liu X, Zhang X-W, Zhang Y, Wang H-L, Yin Z-G, Zhang Y-Z, Liu H, You J-B and Yan H 2016 Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer Nano Energy 28 44–50

    [347] Hegazy H H, Afzal A M, Dahshan A, Iqbal M W and Kebaili I 2022 High-performance 2D/3D hybrid dimensional p-n heterojunction solar cell with reduced recombination rate by an interfacial layer J. Mater. Chem. C 10 14982–92

    [348] Lin S, Li X, Wang P, Xu Z, Zhang S, Zhong H, Wu Z, Xu W and Chen H 2015 Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride Sci. Rep. 5 15103

    [349] LiXQ,ChenWC,ZhangSJ,Wu ZQ,WangP, XuZJ, Chen H S, Yin W Y, Zhong H K and Lin S S 2015 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell Nano Energy 16 310–9

    [350] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 A graphene-based broadband optical modulator Nature 474 64–67

    [351] Sorianello V, Midrio M, Contestabile G, Asselberghs I, van Campenhout J, Huyghebaert C, Goykhman I, Ott A K, Ferrari A C and Romagnoli M 2017 Graphene–silicon phase modulators with gigahertz bandwidth Nat. Photon. 12 40–44

    [352] Sun Z P, Martinez A and Wang F 2016 Optical modulators with 2D layered materials Nat. Photon. 10 227–38

    [353] Li W J, Lin Z Y and Yang G W 2017 A 2D self-assembled MoS2/ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution Nanoscale 9 18290–8

    [354] Zhang Z, Qian Q, Li B and Chen K J 2018 Interface engineering of monolayer MoS2/GaN hybrid heterostructure: modified band alignment for photocatalytic water splitting application by nitridation treatment ACS Appl. Mater. Interfaces 10 17419–26

    [355] Wang S, Ren C, Tian H, Yu J and Sun M 2018 MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: a first-principles study Phys. Chem. Chem. Phys. 20 13394–9

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Comparative coherence between layered and traditional semiconductors: unique opportunities for heterogeneous integration[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42001
    Download Citation