Cong-Bing Tan, Xiang-Li Zhong, Jin-Bin Wang. Polar topological structures in ferroelectric materials [J]. Acta Physica Sinica, 2020, 69(12): 127702-1

Search by keywords or author
- Acta Physica Sinica
- Vol. 69, Issue 12, 127702-1 (2020)
![Typical spin topology defects in magnetic materials: (a) Domain wall[42]; (b) flux-closure pattern[42]; (c) vortex[43]; (d) anti-vortex[43]; (e) center-divergent pattern[43]; (f) center-convergent pattern[43]; (g) meron[43,70]; (h) skyrmion[43,70].](/richHtml/wlxb/2020/69/12/20200311/img_1.jpg)
Fig. 1. Typical spin topology defects in magnetic materials: (a) Domain wall[42]; (b) flux-closure pattern[42]; (c) vortex[43]; (d) anti-vortex[43]; (e) center-divergent pattern[43]; (f) center-convergent pattern[43]; (g) meron[43,70]; (h) skyrmion[43,70].
![Typical polar topologies in ferroelectric materials: (a) Polar vortex in nanodisks[22,71]; (b) polar vortex in nanorods[22,71]; (c) polar vortex in nanodots[74]; (d) vortex in BTO nanoislands[75]; (e) vortex domain in PZT nanodots[28]; (f) anti-vortex domain in BFO films[76,77]; (g) center-divergent domain in BFO films[76-78]; (h) flux-closure pattern in BTO crystal[64,79]; (i), (j) center-divergent (convergent) domain in BFO nanoislands[29-31].](/richHtml/wlxb/2020/69/12/20200311/img_2.jpg)
Fig. 2. Typical polar topologies in ferroelectric materials: (a) Polar vortex in nanodisks[22,71]; (b) polar vortex in nanorods[22,71]; (c) polar vortex in nanodots[74]; (d) vortex in BTO nanoislands[75]; (e) vortex domain in PZT nanodots[28]; (f) anti-vortex domain in BFO films[76,77]; (g) center-divergent domain in BFO films[76-78]; (h) flux-closure pattern in BTO crystal[64,79]; (i), (j) center-divergent (convergent) domain in BFO nanoislands[29-31].
![Mobility of flux-closed topological domains in ferroelectric materials: (a) Bundles-like domain structures at the edges of the PZNPT single crystal lamella[26]; (b) approach, coalesce and separate of the vertices after delivery of a prepoling field pulse[27].](/Images/icon/loading.gif)
Fig. 3. Mobility of flux-closed topological domains in ferroelectric materials: (a) Bundles-like domain structures at the edges of the PZNPT single crystal lamella[26]; (b) approach, coalesce and separate of the vertices after delivery of a prepoling field pulse[27].
![Conductivity of polar topological domains in ferroelectric thin films. Creation (a) and conductivity (b) of the flux-closure domain in BFO films[65,66]; (c) flux- closure domain and center-divergent (convergent) domain in BiFeO3 films and (d) their conductivity[24,68].](/Images/icon/loading.gif)
Fig. 4. Conductivity of polar topological domains in ferroelectric thin films. Creation (a) and conductivity (b) of the flux-closure domain in BFO films[65,66]; (c) flux- closure domain and center-divergent (convergent) domain in BiFeO3 films and (d) their conductivity[24,68].
![Observation of the polar topological domains in ferroelectric thin films: (a) Flux-closure domains in ferroelectric PZT[34]; (b) vortex domains in ferroelectric BFO ultrathin films[82]; (c) flux-closure domains in ferroelectric BFO ultrathin films[37].](/Images/icon/loading.gif)
Fig. 5. Observation of the polar topological domains in ferroelectric thin films: (a) Flux-closure domains in ferroelectric PZT[34]; (b) vortex domains in ferroelectric BFO ultrathin films[82]; (c) flux-closure domains in ferroelectric BFO ultrathin films[37].
![Observation of the polar bubble-like domains in ferroelectric thin films: (a) Polar bubble domains in PZT thin films; (b) structure of the bubble domains; (c) merging and coarsening of the polar bubble domains[83]; (d) erasuring and recreation of the polar bubble domains[84].](/Images/icon/loading.gif)
Fig. 6. Observation of the polar bubble-like domains in ferroelectric thin films: (a) Polar bubble domains in PZT thin films; (b) structure of the bubble domains; (c) merging and coarsening of the polar bubble domains[83]; (d) erasuring and recreation of the polar bubble domains[84].
![Polar topological domains in PTO/STO superlattices: (a) Flux-closure domain arrays in a PTO/STO superlattices on GdScO3 substrate[35]; (b) polar vortex domain arrays in PTO/STO superlattices on DSO substrate[39,90]; (c) a calculated phase diagram for PTOm/STOn illustrating the length scales within which different topological states can be stabilized[40]; (d) polar skyrmion bubbles in a PTO/STO superlattices on STO substrate[41].](/Images/icon/loading.gif)
Fig. 7. Polar topological domains in PTO/STO superlattices: (a) Flux-closure domain arrays in a PTO/STO superlattices on GdScO3 substrate[35]; (b) polar vortex domain arrays in PTO/STO superlattices on DSO substrate[39,90]; (c) a calculated phase diagram for PTOm /STOn illustrating the length scales within which different topological states can be stabilized[40]; (d) polar skyrmion bubbles in a PTO/STO superlattices on STO substrate[41].
![Topological mixed phase structure and field control in ferroelectric superlattice: (a) Lateral piezoresponse force studies revealing the distribution of a1/a2 and vortex phases[95]; (b) dark field TEM image showing ferroelectric vortices and a1/a2-domain coexistence[96]; (c) phase field model of the a1/a2-domain/vortex boundary[96]; (d) reversible electric-field control of ferroelectric and vortex phases[95,97]; (e) temperature-dependent synchrotron X-ray diffraction on reversible switching of ferroelectric and vortex phases[95,97]; (f) reversible sub-picosecond optical pulses control of ferroelectric mixture and supercrystal structure[95,97].](/Images/icon/loading.gif)
Fig. 8. Topological mixed phase structure and field control in ferroelectric superlattice: (a) Lateral piezoresponse force studies revealing the distribution of a 1/a 2 and vortex phases[95]; (b) dark field TEM image showing ferroelectric vortices and a 1/a 2-domain coexistence[96]; (c) phase field model of the a 1/a 2-domain/vortex boundary[96]; (d) reversible electric-field control of ferroelectric and vortex phases[95,97]; (e) temperature-dependent synchrotron X-ray diffraction on reversible switching of ferroelectric and vortex phases[95,97]; (f) reversible sub-picosecond optical pulses control of ferroelectric mixture and supercrystal structure[95,97].
![Topological mixed phase structure and field control in ferroelectric superlattice: (a) Theoretical guidelines to create polar skyrmions[98]; (b) topoligical transition between polar vortex and skyrmion in ferroelectric nanocomposites[88]; (c) phase field model of the topoligical transition between polar vortex and skyrmion in ferroelectric PTO/STO superlattices[58]; (d) manipulating topological transformations of polar vortices in ferroelectric superlattices[99].](/Images/icon/loading.gif)
Fig. 9. Topological mixed phase structure and field control in ferroelectric superlattice: (a) Theoretical guidelines to create polar skyrmions[98]; (b) topoligical transition between polar vortex and skyrmion in ferroelectric nanocomposites[88]; (c) phase field model of the topoligical transition between polar vortex and skyrmion in ferroelectric PTO/STO superlattices[58]; (d) manipulating topological transformations of polar vortices in ferroelectric superlattices[99].
Set citation alerts for the article
Please enter your email address