[1] Huang Weidong, Lin Xin, Chen Jing, et al.. Laser Solid Forming[M]. Xi′ an: Northwestern Polytechnical University Press, 2007: 1-60.
[2] Huang Weidong, Lin Xin. Research progress in laser solid forming of high performance metallic component[J]. Materials China, 2010, 29(6): 12-27.
[3] Liu F C, Lin X, Yang G L, et al.. Microstructure and residual stress of laser rapid formed inconel 718 nickel-base superalloy[J]. Optics & Laser Technology, 2011, 43(1): 208-213.
[4] Ma Liang, Lin Xin, Tan Hua, et al.. Scanning path optimization of laser solid forming based on style[J]. Laser & Optoelectronics Progress, 2013, 50(3): 031405.
[5] Yang G L, Lin X, Liu F C, et al.. Laser solid forming Zr-based bulk metallic glass[J]. Intermetallics, 2012, 22: 110-115.
[6] Lin X, Cao Y Q, Wu X Y, et al.. Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel[J]. Materials Science and Engineering A, 2012, 553: 80-88.
[7] Liu Y H, Chen J, Zhang Q, et al.. Microstructure characteristics of laser forming repaired Ti60 alloy[J]. Chin Opt Lett, 2011, 9(7): 071402.
[9] Vrancken B, Thijs L, Kruth J P, et al.. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting[J]. Acta Materialia, 2014, 68(15): 150-158.
[10] Gu D D, Meiners W, Wissenbach K, et al.. Laser additive manufacturing of metallic components: Materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.
[11] Song Menghua, Lin Xin, Liu Fenggang, et al.. Formation and modeling of the vertical outside wall of components inclining inward in laser solid forming[J]. Acta Metallurgica Sinica, 2015, 51(6): 753-761.
[12] Li Y M, Yang H, Lin X, et al.. The influences of processing parameters on forming characterizations during laser rapid forming[J]. Materials Science and Engineering A, 2003, 360(1-2): 18-25.
[13] De O U, Ocelik V, De H J T M. Analysis of coaxial laser cladding processing conditions[J]. Surface & Coatings Technology, 2005, 197(2-3): 127-136.
[14] Onwubolu G C, Davim J P, Oliveira C, et al.. Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search[J]. Optics & Laser Technology, 2007, 39(6): 1130-1134.
[15] Yu J, Lin X, Wang J J, et al.. Mechanics and energy analysis on molten pool spreading during laser solid forming[J]. Applied Surface Science, 2010, 256(14): 4612-4620.
[16] Liu J C, Li L J. Study on cross-section clad profile in coaxial single-pass cladding with a low-power laser [J]. Optics & Laser Technology, 2005, 37(6): 478-482.
[17] Liu J C. Formation of cross-sectional profile of a clad bead in coaxial laser cladding[J]. Optics & Laser Technology, 2007, 39(8): 1532-1536.
[18] Bi G J, Gasser A, Wissenbach K, et al.. Characterization of the process control for the direct laser metallic powder deposition[J]. Surface & Coatings Technology, 2006, 201(6): 2676-2683.
[19] Tan H, Chen J, Zhang F Y, et al.. Process analysis for laser solid forming of thin-wall structure[J]. International Journal of Machine Tools & Manufacture, 2010, 50(1): 1-8.
[20] Song M H, Lin X, Yang G L, et al.. Influence of forming atmosphere on the deposition characteristics of 2Cr13 stainless steel during laser solid forming[J]. Journal of Materials Processing Technology, 2014, 214(3): 701-709.
[21] Lin J M. Concentration mode of the powder stream in coaxial laser cladding[J]. Optics & Laser Technology, 1999, 31(3): 251-257.
[22] Pinkerton A J, Li L. Modelling powder concentration distribution from a coaxial deposition nozzle for laser-based rapid tooling[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1): 33-41.