• Laser & Optoelectronics Progress
  • Vol. 51, Issue 5, 51103 (2014)
Xu Zhengping*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788.lop51.051103 Cite this Article Set citation alerts
    Xu Zhengping. Application of Digital Micromirror Device in Photoelectric Equipment[J]. Laser & Optoelectronics Progress, 2014, 51(5): 51103 Copy Citation Text show less
    References

    [1] D Dudley, W Duncan, J Slaughter. Emerging digital micromirror device (DMD) applications [C]. SPIE, 2003, 4985: 14-25.

    [2] Dong Jianing, Mu Da, Xu Chunyun, et al.. Projection optical system design of infrared scene simulator based on DMD [J]. Laser & Optoelectronics Process, 2012. 49(12): 122202.

    [3] Li Dan, Xue Yunyun, Cao Wen, et al.. Optimization of DMD illumination system with microlens array [J]. Acta Optica Sinica, 2013, 33(1): 0122002.

    [4] Yin Zhiyong, Wang Xuefeng, Jia Wenwu, et al.. Performance analysis of beam integrator system based on microlens array [J]. Chinese J Lasers, 2012, 39(7): 0702007.

    [5] Xu Zhengping, Shen Honghai, Huang Houtian, et al.. Color control of video displaying system based on single DMD [J]. Infrared and Laser Engineering, 2013, 42(7): 1848-1852.

    [6] Xu Zhengping, Wang Dejiang, Huang Houtian, et al.. Analysis on performance of video displaying system based on DMD [J]. Chinese J Liquid Crystals and Displays, 2013, 28(2): 255-260.

    [7] Yao Yuan, Wang Dejiang, Xu Zhengping, et al.. Design of target simulator based on DMD for infrared imaging guided system [J]. Laser & Optoelectronics Process, 2013, 50(7): 072302.

    [8] Zhou Wang. Study on enhancing dynamic range of CCD image based on digital micromirror device [J]. Acta Optica Sinica, 2009, 29(3): 638-642.

    [9] A A Adeyemi, N Barakat, T E Darcie. Applications of digital micro-mirror devices to digital optical microscope dynamic range enhancement [J]. Opt Express, 2009, 17(3): 1831-1843.

    [10] M Abolbashari, F Magalhaes, F M M Araujo, et al.. High dynamic range compressive imaging: a programmable imaging system [J]. Opt Eng, 2012, 51(7): 071407.

    [11] S K Nayar, T Mitsunaga. High dynamic range imaging: spatially varying pixel exposures [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2000, 1: 472-479.

    [12] Applications [OL]. [2013-11-20]. http://www.pixim.com/applications.

    [13] S K Nayar, V Branzoi, T E Boult. Programmable imaging using a digital micromirror array [C]. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, 1: 1-436.

    [14] Liu Yanyan, Zhang Xin, Xu Zhengping, et al.. Enhancing spatial-resolution with detectors of special-shaped pixels [J]. Optics and Precision Engineering, 2009, 17(10): 2620-2627.

    [15] Liu Yanyan, Zhang Xin, Xu Zhengping, et al.. Application of special-shaped-pixel detectors in super resolution reconstruction [J]. Infrared and Laser Engineering, 2009, 38(6): 971-976.

    [16] A Zlotnik, Y Kapellner, Z Afik, et al.. Geometric superresolution and field-of-view extension achieved using digital mirror devices [J]. J Micro/Nanolith MEMS MOEMS, 2013, 12(3): 033001.

    [17] M Sohail, A A Mudassar. Geometric superresolution using an optical rectangular mask [J]. Opt Eng, 2012, 51(1): 013203.

    [18] Dan Dan, Lei Ming, Yao Baoli, et al.. DMD-based LED-illumination super-resolution and optical sectioning microscopy [J]. Sci Rep 2013, 3.

    [19] Lu Minghai, Shen Xia, Han Shensheng. Ghost imaging via compressive sampling based on digital micromirrordevice [J]. Acta Optica Sinica, 2011, 31(7): 0711002.

    [20] Zhang Shuo, Wang Jie, Wang Jincheng, et al.. Simple calculation method for three-dimensional imaging based on compressed sensing [J]. Acta Optica Sinica, 2013, 33(1): 0111004.

    [21] J Romberg. Imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 14-20.

    [22] Y Bromber, O Katz, Y Silberberg. Ghost imaging with a single detector [J]. Phys Rev A, 2009, 79(5): 3840-3844.

    [23] D Takhar, J N Laska, M Wakin, et al.. A new compressive imaging camera architecture using optical domain compressive [C]. SPIE, 2006, 6065: 606509.

    [24] Chen Tao, Li Zhengwei, Wang Jianli, et al.. Imaging system of single pixel camera based on compressed sensing [J]. Optics and Precision Engineering, 2012, 20(11): 2523-2530.

    [25] Li Kai, Shi Lei, Zeng Libo, et al.. A NIR-Hadamard transform spectrometer controlled by digital micromirror [J]. J Huazhong Univ of Sci & Tech: Natural Science Edition, 2012, 40(10): 30-33.

    [26] Y Wu, I O Mirza, P Ye, et al.. Development of a DMD-based compressive sampling hyperspectral imaging (CS-HSI) system [C]. SPIE, 2011, 7932: 793201.

    [27] C M Wehlburg, J C Wehlburg, S M Gentry, et al.. Optimization and characterization of an imaging hadamard spectrometer [C]. SPIE, 2001, 4381: 506-515.

    [28] S P Love, D L Programmable matched filter and Hadamard transform hyperspectral imagers based on micro-mirror arrays [C]. SPIE, 2009, 7210: 721007.

    [29] S P Love, D L Graff. Full-frame programmable spectral filters based on micro-mirror arrays [C]. SPIE, 2013, 8618: 86180C.

    [30] M W Smith, J L Smith, G K Torrington, et al.. Theoretical description and numerical simulations of a simplified hadamard transform imaging spectrometer [C]. SPIE, 2002, 4816: 372-380.

    CLP Journals

    [1] Wan Lixia, Long Wei, Zhang Xingyuan, Lu Bin. Optical Signal Detection and Processing System for WBC Five Classification[J]. Laser & Optoelectronics Progress, 2015, 52(3): 31701

    [2] Liu Zhitao, Zhou Jinyun, Liu Lixia, Guo Hua, Kuang Jian. A New PCB Digital Lithograph Projection Imaging Technology[J]. Laser & Optoelectronics Progress, 2015, 52(4): 42203