[1] D Dudley, W Duncan, J Slaughter. Emerging digital micromirror device (DMD) applications [C]. SPIE, 2003, 4985: 14-25.
[3] Li Dan, Xue Yunyun, Cao Wen, et al.. Optimization of DMD illumination system with microlens array [J]. Acta Optica Sinica, 2013, 33(1): 0122002.
[4] Yin Zhiyong, Wang Xuefeng, Jia Wenwu, et al.. Performance analysis of beam integrator system based on microlens array [J]. Chinese J Lasers, 2012, 39(7): 0702007.
[5] Xu Zhengping, Shen Honghai, Huang Houtian, et al.. Color control of video displaying system based on single DMD [J]. Infrared and Laser Engineering, 2013, 42(7): 1848-1852.
[7] Yao Yuan, Wang Dejiang, Xu Zhengping, et al.. Design of target simulator based on DMD for infrared imaging guided system [J]. Laser & Optoelectronics Process, 2013, 50(7): 072302.
[9] A A Adeyemi, N Barakat, T E Darcie. Applications of digital micro-mirror devices to digital optical microscope dynamic range enhancement [J]. Opt Express, 2009, 17(3): 1831-1843.
[10] M Abolbashari, F Magalhaes, F M M Araujo, et al.. High dynamic range compressive imaging: a programmable imaging system [J]. Opt Eng, 2012, 51(7): 071407.
[11] S K Nayar, T Mitsunaga. High dynamic range imaging: spatially varying pixel exposures [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2000, 1: 472-479.
[12] Applications [OL]. [2013-11-20]. http://www.pixim.com/applications.
[13] S K Nayar, V Branzoi, T E Boult. Programmable imaging using a digital micromirror array [C]. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, 1: 1-436.
[15] Liu Yanyan, Zhang Xin, Xu Zhengping, et al.. Application of special-shaped-pixel detectors in super resolution reconstruction [J]. Infrared and Laser Engineering, 2009, 38(6): 971-976.
[16] A Zlotnik, Y Kapellner, Z Afik, et al.. Geometric superresolution and field-of-view extension achieved using digital mirror devices [J]. J Micro/Nanolith MEMS MOEMS, 2013, 12(3): 033001.
[17] M Sohail, A A Mudassar. Geometric superresolution using an optical rectangular mask [J]. Opt Eng, 2012, 51(1): 013203.
[18] Dan Dan, Lei Ming, Yao Baoli, et al.. DMD-based LED-illumination super-resolution and optical sectioning microscopy [J]. Sci Rep 2013, 3.
[19] Lu Minghai, Shen Xia, Han Shensheng. Ghost imaging via compressive sampling based on digital micromirrordevice [J]. Acta Optica Sinica, 2011, 31(7): 0711002.
[20] Zhang Shuo, Wang Jie, Wang Jincheng, et al.. Simple calculation method for three-dimensional imaging based on compressed sensing [J]. Acta Optica Sinica, 2013, 33(1): 0111004.
[21] J Romberg. Imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 14-20.
[22] Y Bromber, O Katz, Y Silberberg. Ghost imaging with a single detector [J]. Phys Rev A, 2009, 79(5): 3840-3844.
[23] D Takhar, J N Laska, M Wakin, et al.. A new compressive imaging camera architecture using optical domain compressive [C]. SPIE, 2006, 6065: 606509.
[25] Li Kai, Shi Lei, Zeng Libo, et al.. A NIR-Hadamard transform spectrometer controlled by digital micromirror [J]. J Huazhong Univ of Sci & Tech: Natural Science Edition, 2012, 40(10): 30-33.
[26] Y Wu, I O Mirza, P Ye, et al.. Development of a DMD-based compressive sampling hyperspectral imaging (CS-HSI) system [C]. SPIE, 2011, 7932: 793201.
[27] C M Wehlburg, J C Wehlburg, S M Gentry, et al.. Optimization and characterization of an imaging hadamard spectrometer [C]. SPIE, 2001, 4381: 506-515.
[28] S P Love, D L Programmable matched filter and Hadamard transform hyperspectral imagers based on micro-mirror arrays [C]. SPIE, 2009, 7210: 721007.
[29] S P Love, D L Graff. Full-frame programmable spectral filters based on micro-mirror arrays [C]. SPIE, 2013, 8618: 86180C.
[30] M W Smith, J L Smith, G K Torrington, et al.. Theoretical description and numerical simulations of a simplified hadamard transform imaging spectrometer [C]. SPIE, 2002, 4816: 372-380.