• Laser & Optoelectronics Progress
  • Vol. 56, Issue 4, 042301 (2019)
Qiang Mao, Xionggui Tang*, Fang Meng, Ming Chen, and Shan Liang
Author Affiliations
  • College of Physics and Electronic Science, Hunan Normal University, Changsha, Hunan 410081, China
  • show less
    DOI: 10.3788/LOP56.042301 Cite this Article Set citation alerts
    Qiang Mao, Xionggui Tang, Fang Meng, Ming Chen, Shan Liang. Tunable Narrow-Band Filter with Sub-Wavelength Grating Structure by Micro-Optofluidic Technique[J]. Laser & Optoelectronics Progress, 2019, 56(4): 042301 Copy Citation Text show less
    References

    [1] Takao H, Ishida M. Microfluidic integrated circuits for signal processing using analogous relationship between pneumatic microvalve and MOSFET[J]. Journal of Microelectromechanical Systems, 12, 497-505(2003). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1219518

    [2] White I M, Yazdi S H, Yu W W. Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis[J]. Microfluidics and Nanofluidics, 13, 205-216(2012). http://link.springer.com/article/10.1007/s10404-012-0962-2

    [3] Sun T, van Berkel C, Green N G et al. . Digital signal processing methods for impedance microfluidic cytometry[J]. Microfluidics and Nanofluidics, 6, 179-187(2009). http://link.springer.com/article/10.1007/s10404-008-0315-3

    [4] Pang L, Chen H M, Freeman L M et al. Optofluidic devices and applications in photonics, sensing and imaging[J]. Lab on a Chip, 12, 3543-3551(2012). http://europepmc.org/abstract/MED/22810383

    [5] Guan K M, Liu J Q, Xu Y et al. Efficient pulsed laser ablation in liquid based on microfluidic technology[J]. Chinese Journal of Lasers, 44, 0402006(2017).

    [6] Wu W T, Liang Z C, Zhang L. Optofluidic varifocal microlens[J]. Chinese Journal of Luminescence, 36, 718-723(2015).

    [7] Mao X L, Waldeisen J R, Juluri B K et al. Hydrodynamically tunable optofluidic cylindrical microlens[J]. Lab on a Chip, 7, 1303-1308(2007). http://europepmc.org/abstract/MED/17896014

    [8] Shi J J, Stratton Z. Lin S C S, et al. Tunable optofluidic microlens through active pressure control of an air-liquid interface[J]. Microfluidics and Nanofluidics, 9, 313-318(2010). http://link.springer.com/article/10.1007/s10404-009-0548-9

    [9] Seow Y C, Liu A Q, Chin L K et al. Different curvatures of tunable liquid microlens via the control of laminar flow rate[J]. Applied Physics Letters, 93, 084101(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4836800

    [10] Helbo B, Kristensen A, Menon A. Amicro-cavity fluidic dye laser[J]. Journal of Micromechanics and Microengineering, 13, 307-311(2003). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1189729

    [11] Gersborg-Hansen M, Balslev S, Mortensen N Aet al. A coupled cavity micro-fluidic dye ring laser[J]. 78-, 79, 185-189(2005).

    [12] Tang X G, Liang S, Li R J. Design for controllable optofluidic beam splitter[J]. Photonics and Nanostructures-Fundamentals and Applications, 18, 23-30(2016). http://www.sciencedirect.com/science/article/pii/S1569441015000796

    [13] Tang X G, Li R J, Liao J K et al. A scheme for variable optofluidic attenuator: Design and simulation[J]. Optics Communications, 305, 175-179(2013). http://www.sciencedirect.com/science/article/pii/S0030401813004987

    [14] Levy U, Campbell K, Groisman A et al. On-chip microfluidic tuning of an optical microring resonator[J]. Applied Physics Letters, 88, 111107(2006). http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?tp=&arnumber=4818929

    [15] Fang C L, Dai B, Xu Q et al. Optofluidic tunable linear narrow-band filter based on Bragg nanocavity[J]. IEEE Photonics Journal, 9, 1-8(2017). http://ieeexplore.ieee.org/document/7822974/

    [16] Yu Z, Liang R S, Chen P X et al. Integrated tunable optofluidics optical filter based on MIM side-coupled-cavity waveguide[J]. Plasmonics, 7, 603-607(2012). http://link.springer.com/article/10.1007/s11468-012-9348-2

    [17] Li Z G, Yang Y, Zhang X M et al. Tunable visual color filter using microfluidic grating[J]. Biomicrofluidics, 4, 043013(2010). http://scitation.aip.org/content/aip/journal/bmf/4/4/10.1063/1.3491469

    [18] Xiao G H, Zhu Q Z, Shen Y et al. A tunable submicro-optofluidic polymer filter based on guided-mode resonance[J]. Nanoscale, 7, 3429-3434(2015). http://europepmc.org/abstract/med/25630880

    [19] Tang X G, Fu K X, Wang Z H et al. Analysis of rigorous modal theory for arbitrary dielectric gratings made with anisotropic materials[J]. Acta Optica Sinica, 22, 774-779(2002).

    [20] Li L F. Use of Fourier series in the analysis of discontinuous periodic structures[J]. Journal of the Optical Society of America A, 13, 1870-1876(1996). http://www.emeraldinsight.com/servlet/linkout?suffix=b14&dbid=16&doi=10.1108%2FCOMPEL-10-2012-0269&key=10.1364%2FJOSAA.13.001870

    [21] Fu K X, Wang Z H, Zhang D Y et al. A modal theory and recursion RTCM algorithm for gratings of deep grooves and arbitrary profile[J]. Science in China Series A: Mathematics, 42, 636-645(1989). http://link.springer.com/article/10.1007/BF02880082

    [22] Fu K X, Wang Z H, Zhang Q et al. Theresonance peak theory of reflection guided-mode resonance filters[J]. Chinese Journal of Lasers B, 8, 313-321(1999). http://www.opticsjournal.net/Articles/Abstract?aid=OJ060808000714cIfLiO

    [23] Tang X G, Du C L. Analysis of nonpolarizing narrow-band filters based on resonant anomaly[J]. Acta Optica Sinica, 24, 668-672(2004).

    Qiang Mao, Xionggui Tang, Fang Meng, Ming Chen, Shan Liang. Tunable Narrow-Band Filter with Sub-Wavelength Grating Structure by Micro-Optofluidic Technique[J]. Laser & Optoelectronics Progress, 2019, 56(4): 042301
    Download Citation