• Acta Physica Sinica
  • Vol. 69, Issue 2, 024201-1 (2020)
Nan Wang1,2,3 and Shuang-Chen Ruan2,4,*
Author Affiliations
  • 1College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Shenzhen Key Laboratory of Laser Engineering, Shenzhen University, Shenzhen 518060, China
  • 3Key Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 4Shenzhen Technology University, Shenzhen 518118, China
  • show less
    DOI: 10.7498/aps.69.20191587 Cite this Article
    Nan Wang, Shuang-Chen Ruan. Analytical algorithem of stretcher dispersion in chirp pulse amplification laser system[J]. Acta Physica Sinica, 2020, 69(2): 024201-1 Copy Citation Text show less

    Abstract

    Dispersion control is one of many key techniques in ultrashort laser pulse generation and its applications. By controlling the optical path of wavelength in the laser pulse to generate relative time delay, the pulse width of laser can be changed. The stretcher is the optical scheme to broaden the pulse width in chirp pulse amplification. By using ray trace, the pulse stretch time can be evaluated. However, due to the complicated formula of optical path in stretcher, it is difficult to obtain an analytical expression of high-order dispersion by using direct derivative. In this case, the present numerical methods are commonly used and error would be introduced into the optical system design and optimization inevitably. In this paper we introduce an analytical algorithm of stretcher dispersion. By summarizing the characteristic of stretcher formula, four fundamental functions are introduced to help to calculate the analytical derivative. By substituting the separate terms of the expressions step by step, analytical calculation of stretcher dispersion can be realized. In this paper, the ray trace of Martinez stretcher is first introduced to achieve similar phase expressions to them of existing Offner stretcher, then accurate high order dispersion results are attained by using analytical method, finally the calculation results by using the analytical method and numerical method are compared with each other. The algorithm introduced into this paper for calculating the dispersion is practical and hopeful in designing the chirp pulse amplification laser systems.
    $Φoffner=ΦLoΦGo=kLo=2πλ(ABo+BCo+CDo+DEo+EFo)2πdEAo,$(1)

    View in Article

    $ ABo=Rsin(θ1θ2)sinθ1,BCo=CDo=Rsin(θ3θ2)sinθ3,DEo=Rsin(θ1+2θ33θ2)sin(θ1+2θ34θ2)[(RL)sin(θ1+2θ34θ2)+Rsinθ2]sinθ0sin(θ0+θ1+2θ34θ2)sin(θ1+2θ34θ2), $()

    View in Article

    $ EAo=(RL)sin(θ1+2θ34θ2)+Rsinθ2sin(θ0+θ1+2θ34θ2),EFo=EAosinθ5, $()

    View in Article

    $θ0=π2arcsin(λ0dsinγ0),θ1=π2θ0arcsin(λdsinγ0),θ2=θ4=arcsin(RLRsinθ1),θ3=arcsin(2sinθ2),θ5=arcsin[λdcos(θ0+θ1+2θ34θ2)]. $()

    View in Article

    $ΦMartinez=ΦLMΦGM=kLM=2πλ(ABM+BCM+CDM+DEM+EFM)2πdEAM,$(2)

    View in Article

    $ABM=Rsin(θ1θ2)sinθ1,BCM+CDM=ADMABM=Rsin(θ3+θ4)sinθ3ABMsinθ1sinθ3,DEM=DGMEGM=DGMAGMsinθ0sin(π2+θ5)=Rsin(θ3+θ4)sin(θ3+2θ4)[RLRsinθ4sin(θ3+2θ4)]sinθ0sin(π2+θ5),EAM=AGMsin(θ3+2θ4)sin(π2+θ5)=[RLRsinθ4sin(θ3+2θ4)]sin(θ3+2θ4)sin(π2+θ5),EFM=EAMcosθ6,$()

    View in Article

    $ θ0=π2arcsin(λ0dsinγ0),θ1=π2θ0arcsin(λdsinγ0),θ2=arcsin(RLRsinθ1),θ3=2θ2θ1,θ4=arcsin[(sinθ2sinθ31)sinθ3],$()

    View in Article

    $θ5=π/2(θ0+θ3+2θ4),θ6=π/2arcsin(λ/dsinθ5).$()

    View in Article

    $\left\{ {y=sinx,y˙=cosxx˙,y¨=sinxx˙2+cosxx¨,y=cosxx˙33sinxx˙x¨+cosxx,y(4)=sinxx˙46cosxx˙2x¨3sinxx¨24sinxx˙x+cosxx(4).} \right.$(3)

    View in Article

    $\small \left\{ {y=sinx,y˙=cosxx˙,y¨=sinxx˙2+cosxx¨,y=cosxx˙33sinxx˙x¨+cosxx,y(4)=sinxx˙46cosxx˙2x¨3sinxx¨24sinxx˙x+cosxx(4).} \right.\tag{A1}$()

    View in Article

    $\small \left\{ {y=arcsinx,y˙=(1x2)12x˙,y¨=x(1x2)32x˙2+(1x2)12x¨,y=(1x2)32x˙3+3x2(1x2)52x˙3+3x(1x2)32x˙x¨+(1x2)12x,y(4)=9x(1x2)52x˙4+15x3(1x2)72x˙4+18x2(1x2)52x˙2x¨+4x(1x2)32xx˙+6(1x2)32x˙2x¨+(1x2)12x(4)+3x(1x2)32x˙2.} \right.\tag{A2}$()

    View in Article

    $\small \left\{ {y=AB1,y˙=A˙B1B2AB˙,y¨=A¨B12B2A˙B˙+2B3AB˙2B2AB¨,y=AB3B2A¨B˙3B2A˙B¨+6B3A˙B˙2+6B3AB¨B˙6B4AB˙3B2AB,y(4)=A(4)B14B2AB˙4B2A˙B6B2A¨B¨+24B3A˙B˙B¨36B4AB˙2B¨+12B3A¨B˙224B4A˙B˙3+8B3AB˙B+6B3AB¨2+24B5AB˙4B2AB(4).} \right. \tag{A3}$()

    View in Article

    $\small\left\{ {y=A+B,y˙=A˙+B˙,y¨=A¨+B¨,y=A+B,y(4)=A(4)+B(4).} \right. \tag{A4}$()

    View in Article

    Nan Wang, Shuang-Chen Ruan. Analytical algorithem of stretcher dispersion in chirp pulse amplification laser system[J]. Acta Physica Sinica, 2020, 69(2): 024201-1
    Download Citation