• Photonics Research
  • Vol. 13, Issue 1, 49 (2025)
Haixiang Ma1,†, Fu Feng1,2,5,†,*, Jie Qiao1..., Jiaan Gan3 and Xiaocong Yuan1,4,6,*|Show fewer author(s)
Author Affiliations
  • 1Research Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou 311100, China
  • 2State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
  • 3Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
  • 4Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518061, China
  • 5e-mail: fufeng@zhejianglab.com
  • 6e-mail: xcyuan@zhejianglab.com
  • show less
    DOI: 10.1364/PRJ.530406 Cite this Article Set citation alerts
    Haixiang Ma, Fu Feng, Jie Qiao, Jiaan Gan, Xiaocong Yuan, "Positioning spherical nanoantennas with picometer precision," Photonics Res. 13, 49 (2025) Copy Citation Text show less
    References

    [1] N. A. Hatab, C. H. Hsueh, A. L. Gaddis. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett., 10, 4952-4955(2010).

    [2] A. Kinkhabwala, Z. Yu, S. Fan. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics, 3, 654-657(2009).

    [3] M. Fu, M. Mota, X. F. Xiao. Near-unity Raman β-factor of surface-enhanced Raman scattering in a waveguide. Nat. Nanotechnol., 17, 1251-1257(2022).

    [4] R. M. Córdova-Castro, B. van Dam, A. Lauri. Single-emitter super-resolved imaging of radiative decay rate enhancement in dielectric gap nanoantennas. Light Sci. Appl., 13, 7(2024).

    [5] B. Sain, C. Meier, T. Zentgraf. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv. Photonics, 1, 024002(2019).

    [6] S. B. Liu, Y. X. Shang, Y. F. Jiao. DNA-based plasmonic nanostructures and their optical and biomedical applications. Nanotechnology, 32, 402002(2021).

    [7] C. Vidal, B. Tilmann, S. Tiwari. Fluorescence enhancement in topologically optimized gallium phosphide all-dielectric nanoantennas. Nano Lett., 24, 2437-2443(2024).

    [8] L. Ma, P. Yu, W. H. Wang. Nanoantenna-enhanced light-emitting diodes: fundamental and recent progress. Laser Photonics Rev., 15, 2000367(2021).

    [9] H. Abudayyeh, B. Lubotzky, A. Blake. Single photon sources with near unity collection efficiencies by deterministic placement of quantum dots in nanoantennas. APL Photonics, 6, 036109(2021).

    [10] Z. G. Dong, Z. Mahfoud, R. Paniagua-Domínguez. Nanoscale mapping of optically inaccessible bound-states-in-the-continuum. Light Sci. Appl., 11, 20(2022).

    [11] B. Lubotzky, A. Nazarov, H. Abudayyeh. Room-temperature fiber-coupled single-photon sources based on colloidal quantum dots and SiV centers in back-excited nanoantennas. Nano Lett., 24, 640-648(2024).

    [12] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [13] Z. Xi, H. P. Urbach. Retrieving the size of deep-subwavelength objects via tunable optical spin-orbit coupling. Phys. Rev. Lett., 120, 253901(2018).

    [14] M. Neugebauer, P. Woźniak, A. Bag. Polarization-controlled directional scattering for nanoscopic position sensing. Nat. Commun., 7, 11286(2016).

    [15] Z. Xi, L. Wei, A. J. Adam. Accurate feeding of nanoantenna by singular optics for nanoscale translational and rotational displacement sensing. Phys. Rev. Lett., 117, 113903(2016).

    [16] A. Bag, M. Neugebauer, P. Woźniak. Transverse Kerker scattering for angstrom localization of nanoparticles. Phys. Rev. Lett., 121, 193902(2018).

    [17] M. Neugebauer, S. Nechayev, M. Vorndran. Weak measurement enhanced spin hall effect of light for particle displacement sensing. Nano Lett., 19, 422-425(2019).

    [18] P. Beck, M. Neugebauer, P. Banzer. Toward high-speed nanoscopic particle tracking via time-resolved detection of directional scattering. Laser Photonics Rev., 14, 2000110(2020).

    [19] S. Nechayev, J. S. Eismann, M. Neugebauer. Shaping field gradients for nanolocalization. ACS Photonics, 7, 581-587(2020).

    [20] Z. Xi, S. Konijnenberg, H. P. Urbach. Information-efficient metagrating for transverse-position metrology. Phys. Rev. Appl., 14, 014026(2020).

    [21] S. Berg-Johansen, M. Neugebauer, A. Aiello. Microsphere kinematics from the polarization of tightly focused nonseparable light. Opt. Express, 29, 12429-12439(2021).

    [22] H. Zhang, K. Gao, L. Han. Nanometric displacement sensor with a switchable measuring range using a cylindrical vector beam excited silicon nanoantenna. Opt. Express, 29, 25109-25117(2021).

    [23] I. Freund. Polarization singularity indices in Gaussian laser beams. Opt. Commun., 201, 251-270(2002).

    [24] T. Zang, H. Zang, Z. Xi. Asymmetric excitation of surface plasmon polaritons via paired slot antennas for angstrom displacement sensing. Phys. Rev. Lett., 124, 243901(2020).

    [25] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. Math. Phys. Eng. Sci., 253, 358-379(1959).

    [26] J. Crassous, M. J. Fuchter, D. E. Freedman. Materials for chiral light control. Nat. Rev. Mater., 8, 365-371(2023).

    [27] Z. Man, Z. Xi, X. Yuan. Dual coaxial longitudinal polarization vortex structures. Phys. Rev. Lett., 124, 103901(2020).

    [28] L. Du, Z. Man, Y. Zhang. Manipulating orbital angular momentum of light with tailored in-plane polarization states. Sci. Rep., 7, 41001(2017).

    [29] I. Gianani, A. Suprano, T. Giordani. Transmission of vector vortex beams in dispersive media. Adv. Photonics, 2, 036003(2020).

    [30] K. L. Kelly, E. Coronado, L. L. Zhao. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107, 668-677(2003).

    [31] G. H. Yuan, N. I. Zheludev. Detecting nanometric displacements with optical ruler metrology. Science, 364, 771-775(2019).

    [32] M. R. Alam, K. M. Muttaqi, A. Bouzerdoum. A new approach for classification and characterization of voltage dips and swells using 3-D polarization ellipse parameters. IEEE Trans. Power. Deliv., 30, 1344-1353(2014).

    Haixiang Ma, Fu Feng, Jie Qiao, Jiaan Gan, Xiaocong Yuan, "Positioning spherical nanoantennas with picometer precision," Photonics Res. 13, 49 (2025)
    Download Citation