[2] JIANG C X, ZHUANG Y H, WANG J J, et al. Preparation, microstructure, and properties of GPS silicon nitride ceramics with β-Si3N4 seeds and nanophase additives[J]. Int J Appl Ceram Technol, 2022, 19(5): 2533-2544.
[3] HU J B, ZHANG B, LI C, et al. Fabrication of Si3N4 ceramics with high thermal conductivity and flexural strength via novel two-step gas-pressure sintering[J]. J Eur Ceram Soc, 2022, 42(12): 4846-4854.
[4] MA B Y, TANG Y D, DENG C J. Effects of Al2O3-Y2O3/Yb2O3 additives on microstructures and mechanical properties of silicon nitride ceramics prepared by hot-pressing sintering[J]. Int J Appl Ceram Technol, 2022, 46: 2523-2532.
[5] KUMAR K, KIM M J, OH H M, et al. Fabrication of highly dense Si3N4 via record low‐content additive system for low‐temperature pressureless sintering[J]. J Am Ceram Soc, 2022, 105(7): 4669-4680.
[6] SUN L, FANG J, GUO S, et al. Effect of MgO/Al2O3 ratio on the crystallization behaviour of Li2O-MgO-Al2O3-SiO2 glass-ceramic and its wettability on Si3N4 ceramic[J]. Ceram Inter, 2022, 48(14): 20053-20061.
[7] BAKE A, HAKEEM A S, AHMED B A, et al. Effect of nano-and micro-sized Si3N4 powder on phase formation, microstructure and properties of β′-SiAlON prepared by spark plasma sintering[J]. Ceram Inter, 2022, 48(2): 1916-1925.
[8] KUMAR K, PARK Y J, KIM M J, et al. Influence of ternary oxide additives on thermal conductivity of pressureless sintered Si3N4[J]. Mater Lett, 2022, 328: 133189.
[10] TSUKAHO Y, DAISUKE K, TAKUMA T, et al. Electrical resistivity of Si3N4 ceramics with Yb2O3 additive[J]. J Am Ceram Soc, 2021, 105(3): 2046-2057.
[15] BELLOSI A, GUICCIARDI S, TAMPIERI A. Development and characterization of electroconductive Si3N4-TiN composites[J]. J Eur Ceram Soc, 1992, 9(2): 83-93.
[16] PAULASTO M, KIVILAHTI J K, VAN LOO F J J. Interfacial reactions in Ti/Si3N4 and TiN/Si diffusion couples[J]. J Appl Phys, 1995, 77(9): 4412-4416.
[17] SINGH H, HAYAT M, HUANG S F, et al. An in situ neutron diffraction study of phase formation during Ti-Si3N4 powder sintering[J]. Adv Powder Mater, 2022, 1(1): 100001.
[18] SUN N, WANG Z H, YU B, et al. Effects of Ti(C, N) addition on the microstructure and mechanical properties of spark plasma sintered Si3N4/Ti(C, N) ceramic tool material[J]. Ceram Int, 2020, 46(18): 28459-28466.
[19] MOULSON A J. Reaction-bonded silicon nitride: Its formation and properties[J]. J Mater Sci, 1979, 14(5): 1017-1051.
[20] GE Y Y, SUN S Y, WANG Q, et al. Effect of Fe-contained species on the preparation of α-Si3N4 fibers in combustion synthesis[J]. J Am Ceram Soc, 2016, 99(4): 1464-1471.
[21] PAVARAJARN V, KIMURA S. Catalytic effects of metals on direct nitridation of silicon[J]. J Am Ceram Soc, 2004, 84(8): 1669-1674.
[22] OLIVEIRA, SILVA, VIEIRA. Chemical interaction silicon nitride ceramics and iron alloys[J]. Boletín De La Sociedad Espaola De Cerám Y Vidrio, 2000, 39(6): 711-715.
[24] NAZIR M H, AHMAD KHAN Z, SAEED A. Experimental analysis and modelling of c-crack propagation in silicon nitride ball bearing element under rolling contact fatigue[J]. Tribol Int, 2018, 126: 386-401.
[25] MATSUDA S, NAKADA T. Simple mechanics model and Hertzian ring crack initiation strength characteristics of silicon nitride ceramic ball subjected to thermal shock[J]. Eng Fract Mech, 2018, 197: 236-247.
[27] VAN WEEREN R, LEONE E A, CURRAN S, et al. Synthesis and characterization of amorphous Si2N2O[J]. J Am Ceram Soc, 1994, 77(10): 2699-2702.
[28] LI B, LI G Q, CHEN J H, et al. Formation mechanism of elongated β-Si3N4 crystals in Fe-Si3N4 composite via flash combustion[J]. Ceram Int, 2018, 44(8): 9395-9400.
[30] SHIMOO T, OKAMURA K, YAMASAKI T. Reaction between Si3N4 and Fe-Ni alloy[J]. J Mater Sci, 1999, 34: 5525-5532.
[31] PASTO A E. Causes and effects of Fe‐bearing inclusions in sintered Si3N4[J]. J Am Ceram Soc, 1984, 67(9): C-178-C-180.
[33] QIN H X, LI Y, NIE X, et al. Combined effect of Fe-Si alloys and carbon on Si3N4 stability at elevated temperatures[J]. Ceram Int, 2019, 45(3): 3290-3296.
[35] WANG L J, QI Q, CAI P, et al. New route to improve the fracture toughness and flexural strength of Si3N4 ceramics by adding FeSi2[J]. Scr Mater, 2017, 126: 11-14.
[36] BILLY M, LABBE J C, SELVARAJ A, et al. Modifications structurales du nitrure de silicium en fonction de la temperature[J]. Mater Res Bull, 1983, 18(8): 921-934.
[37] BAKE A, HAKEEM A S, AHMED B A, et al. Effect of nano- and micro-sized Si3N4 powder on phase formation, microstructure and properties of β’-SiAlON prepared by spark plasma sintering[J]. Ceram Int, 2022, 48(2): 1916-1925.
[38] TIAN X K, SU K, OUYANG D Z, et al. Effect of impurities of Fe2O3 and TiO2 in bauxite on oxidation kinetics of β-SiAlON powders[J]. Corros Sci, 2022, 203: 110374.
[39] SOBCZAK N. Effects of titanium on wettability and interfaces in aluminium/ceramic systems[C]//Proceedings of the International Conference on ICCCI 2003, Kurashiki, Japan, 2003: 83-91.
[40] XIONG H P, DONG W, CHEN B, et al. Wettability of Ni-V, Co-V, and Ni-Cr-V system brazing alloys on Si3N4 ceramic and interfacial reactions[J]. Mater Sci Eng A, 2008, 474(1-2): 376-381.
[41] IYER H, XIAO Y C, DURLIK D, et al. Wettability of carbon (C), silicon carbide (SiC), and silicon nitride (Si3N4) with liquid silicon (Si)[J]. JOM, 2021, 73(1): 244-252.