• Laser & Optoelectronics Progress
  • Vol. 60, Issue 16, 1600004 (2023)
Junhai Luo* and Hang Yu
Author Affiliations
  • School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
  • show less
    DOI: 10.3788/LOP222077 Cite this Article Set citation alerts
    Junhai Luo, Hang Yu. Research of Infrared Dim and Small Target Detection Algorithms Based on Low-Rank and Sparse Decomposition[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1600004 Copy Citation Text show less
    Vectorization of patch image
    Fig. 1. Vectorization of patch image
    Construction of patch tensor
    Fig. 2. Construction of patch tensor
    Constraints of background component
    Fig. 3. Constraints of background component
    Construction of holistic spatial-temporal tensor
    Fig. 4. Construction of holistic spatial-temporal tensor
    Construction of spatial-temporal patch tensor
    Fig. 5. Construction of spatial-temporal patch tensor
    Detection results
    Fig. 6. Detection results
    ReferenceConstraints of background componentsPublish yearConstraint term
    15Low-rank constraints of background patch image2013Nuclear norm
    162017Partial sum of singular values
    172018Weighted nuclear norm
    192018γ norm
    212019Schatten 1/2 norm
    25Low-rank constraints of background tensor2019Tensor nuclear norm
    282019Partial sum of tensor nuclear norm
    33nonconvex tensor rank surrogate via Laplace function
    302018Weighted tensor nuclear norm
    312019Weighted Schatten p norm
    362022Improved tensor nuclear norm
    382021METTR norm
    222017Sum of nuclear norm
    40Total variation constraints2017Isotropic total variation
    412020Tensor nonlocal total variation
    422022Hyper total variation
    4420193D anisotropic total variation
    Table 1. Comparison of background component constraints
    ReferenceConstraints of target componentPublish yearSparse constraints term /methods for extracting prior
    16Sparse constraints of target component2017L1 norm with non-negative constraint
    192018Weighted L1 norm
    452018Weighted L1 norm
    462019Lp-Norm
    47Weighting factor for the target component2016Steering kernel
    482017Variation weighted information entropy
    492020Local image entropy
    412020Structure tensor
    502021Double window local contrast measure
    512022Structure tensor and direction derivative
    332020Local contrast energy
    362022Local visual saliency
    Table 2. Comparison of target component constraints
    ReferenceRepresentation of infrared imagePublish yearUtilization of temporal information
    52Matrix2020temporal extension of sequence image and temporal low-rank and sparse decomposition
    532019Spatial-temporal patch image
    542016Temporal consistency constraint for target component
    552022Temporal consistency constraint for target component
    56Tensor2020holistic spatial-temporal tensor
    572020spatial-temporal patch tensor
    582022holistic spatial-temporal tensor
    592022non-overlapping spatial-temporal patch tensor
    Table 3. Comparison of joint temporal information constraints
    AlgorithmScene 1Scene 2Scene 3Scene 4Scene 5
    GSCRGFBSFGSCRGFBSFGSCRGFBSFGSCRGFBSFGSCRGFBSF
    LCM2.190.4141.411.301.390.532.551.184.990.60
    Max_mean0.470.430.390.251.220.661.021.490.970.67
    IPI11.079.832.001.23infinfinfinf68.4435.12
    Nipps52.9035.3720.749.34infinf8.1326.43infinf
    NRAM37.8724.45infinfinfinfinfinfinfinf
    PSTNNinfinfinfinfinfinfinfinfinfinf
    ECA_STT19.0612.4358.5628.69391.38106.100.960.903.461.57
    RIPTinfinfinfinfinfinfinfinf13.196.19
    ASTTV_NTLAinfinfinfinfinfinf5.066.85389.68204.11
    Table 4. Comparison of GSCRG and FBSF
    AlgorithmScene 1Scene 2Scene 3Scene 4Scene 5
    LCM00.160.800.150.160.15
    Max_mean0.0040.0130.0030.0030.005
    IPI4.7231.864.845.145.51
    Nipps11.82115.366.2312.6511.12
    NRAM1.9835.010.8911.541.91
    PSTNN0.273.000.550.640.69
    ECA_STT6.634.6040.617.107.14
    RIPT2.9814.992.193.825.5
    ASTTV_NTLA1.729.751.181.861.84
    Table 5. Single frame computation time
    AlgorithmComputational complexity
    Max_meanO(MN)
    LCMO(K3MN)
    IPIO(mn2)
    NRAMO(mn2)
    NIPPSO(mn2)
    ECA_STTO(n1n2n3logn3+n1n22(n3+1)/2)
    RIPTO(n1n2n3(n1n2+n1n3+n2n3))
    PSTNNO(n1n2n3logn3+n1n22(n3+1)/2)
    ASTTV_NTLAO(n1n2n32logn3+n1n22(n1n2n32+1)/2)
    Table 6. Comparison of computational complexity
    Junhai Luo, Hang Yu. Research of Infrared Dim and Small Target Detection Algorithms Based on Low-Rank and Sparse Decomposition[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1600004
    Download Citation