[1] KURAOKA K, CHUJO Y, YAZAWA T. Hydrocarbon separation via porous glass membranes surface-modified using organosilane compounds[J]. J Membr Sci, 2001, 182(1): 139-149.
[3] YAZAWA T, TANAKA H, NAKAMICHI H, et al. Preparation of water and alkali durable porous glass membrane coated on porous alumina tubing by sol-gel method[J]. J Membr Sci, 1991, 60(2): 307-317.
[4] NICOLL S B, RADIN S, SANTOS E M, et al. In vitro release kinetics of biologically active transforming growth factor-β1 from a novel porous glass carrier[J]. Biomaterial, 1997, 18(12): 853-859.
[6] KOKUBU T, YAMANE M. Thermal and chemical properties of TiO2-SiO2 porous glass-ceramics[J]. J Mater Sci, 1987, 22(7): 2583-2588.
[7] XAVIER MAP, VALLEJO B, MARAZUELA MAD, et al. Fiber optic monitoring of carbamate pesticides using porous glass with covalently bound chlorophenol red[J]. Biosens Bioelectron, 2000, 14(12): 895-905.
[8] YANG L, DAI N, LIU Z, et al. Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence[J]. J Mater Chem, 2011, 21(17): 6274-6279.
[10] ENKE D, JANOWSKI F, SCHWIEGER W. Porous glasses in the 21st century--a short review[J]. Micropor Mesopor Mat, 2003, 60(1): 19-30.
[12] CHU Y, YANG Y, LIAO L, et al. 3D Nanoporous Silica Rods for Extra-Large-Core High-Power Fiber Lasers[J]. ACS Photon, 2018, 5(10): 4014-4021.
[14] CHEN D, MIYOSHI H, AKAI T, et al. Colorless transparent fluorescence material: Sintered porous glass containing rare-earth and transition-metal ions[J]. Appl Phys Lett, 2005, 86(23): 231908.
[15] LIU W, CHEN D, MIYOSHI H, et al. Colorless transparent fluorescence material at the vuv excitation: the leached sintered glass with impregnation of Tb3+ ions[J]. Chem Lott, 2005, 34: 1176-1177.
[16] LIU W, CHEN D, MIYOSHI H, et al. Tb3+-impregnated, non-porous silica glass possessing intense green luminescence under UV and VUV excitation[J]. J Non-Cryst Solids, 2006, 352(28): 2969-2976.
[17] LIU W, CHEN D, AKAI T. Preparation and photoluminescence properties of Vycor glasses impregnated with Tb3+ and Ce3+(or Gd3+)[J]. Mater Chem Phys, 2008, 109(2): 257-261.
[18] YANG L, YAMASHITA M, AKAI T. Adjusting valence state of europium in sintered porous glass by adding of aluminum and yttrium[J]. J Non-Cryst Solids, 2011, 357(11): 2400-2402.
[19] YANG L, YAMASHITA M, AKAI T. Green and red high-silica luminous glass suitable for near-ultraviolet excitation[J]. Opt Express, 2009, 17(8): 6688-6695.
[20] LIU Z, DAI N, LUAN H, et al. Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass[J]. Opt Express, 2010, 18(20): 21138-21146.
[21] ZHOU S, JIANG N, ZHU B, et al. Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers[J]. Adv Funct Mater, 2008, 18(9): 1407-1413.
[22] ZHANG Q, CHEN G, XU Y, et al. Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability[J]. Appl Phys B, 2010, 98(2): 261-265.
[23] CHU Y, YANG Y, LIU Z, et al. Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass[J]. Appl Phys A, 2015, 118(4): 1429-1435.
[24] YANG Y, CHU Y, CHEN Z, et al. Blue upconversion luminescence for Yb3+/Tm3+ co-doped borosilicate glasses[J]. J Lumin, 2018, 195: 247-251.
[25] YANG Y, CHU Y, CHEN Z, et al. Blue upconversion in Yb3+/Tm3+ co-doped silica fiber based on glass phase-separation technology[J]. Appl Phys A, 2018, 124(2): 205.
[26] YAN-BO Q, XIAO-FENG L, QIANG Z, et al. Synthesis and luminescence properties of YVO4:Eu nanocrystals grown in nanoporous glass[J]. Mater Lett, 2010, 64: 1306-1308.
[27] HAN S, DU Y, YUAN J, et al. Luminescence behavior of Eu3+ in silica glass containing GdVO4: Eu nanocrystals[J]. J Non-Cryst Solids, 2020, 532: 119894.
[28] HAN S, TAO Y, DU Y, et al. Luminescence behavior of GdVO4: TB nanocrystals in silica glass-ceramics[J]. Crystal, 2020, 10(5): 396.
[29] CHEN P, MAO Y, HOU S, et al. Growth of SnO2 nanocrystals co-doped with Eu3+ for highly enhanced photoluminescence in mesoporous silica glasses[J]. J Mater Chem C, 2019, 7(6): 1568-1574.
[30] CHEN P, MAO Y, HOU S, et al. Effects of In2O3 nanoparticles doping on the photoluminescent properties of Eu2+/Eu3+ ions in silica glasses[J]. Ceram Int, 2019, 45(1): 233-238.
[31] CHEN P, HOU S, YANG Y, et al. ITO nanoparticles enhanced upconversion luminescence in Er3+/Yb3+-codoped silica glasses[J]. Nanoscale, 2018, 10(7): 3299-3306.
[32] SIDOROV AI, TUNG ND, VAN WU N, et al. Optical properties of nanocomposites based on zinc and tin sulfides in nanoporous silicate glass[J]. Opt Spectrosc, 2019, 127(5): 914-918.
[33] LITVIN A P, BABAEV A A, PARFENOV P S, et al. Photoluminescence of lead sulfide quantum dots of different sizes in a nanoporous silicate glass matrix[J]. J Phys Chem C, 2017, 121(15): 8645-8652.
[34] MA Y, ZHANG N, YANG L. Long-wavelength emissive solid-state carbon dots in nanoporous glass with excellent thermal stability[J]. J Colloid Interface Sci, 2021, 599: 686-693.
[35] ZERVAS M N, CODEMARD C A. High power fiber lasers: A review[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5): 219-241.
[36] CHU Y, MA Y, YANG Y, et al. Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology[J]. Opt Lett, 2016, 41(6): 1225-1228.
[37] CHU Y, YANG Y, HU X, et al. Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology[J]. Opt Express, 2017, 25(20): 24061-24067.
[38] WANG S, LIU Y, ZHANG D, et al. Tailoring of communication band luminescence for super broadband optical amplifier based on Er3+/Yb3+/P5+ co-doped nanoporous silica glass[J]. Ceram Int, 2021, 47(13): 18913-18919.
[39] CHU Y, YANG Y, LIU Y, et al. 1.8 μm fluorescence characteristics of Tm3+ doped silica glasses and fiber prepared by the glass phase-separation technology[J]. J Non-Cryst Solids, 2020, 529:119704.
[41] LI M, BAI G, GUO Y, et al. Investigation on Tm3+-doped silicate glass for 1.8 μm emission[J]. J Lumin, 2012, 132(7): 1830-1835.
[43] BROCKLESBY W S, MATHIEU A, BROWN R S, et al. Defect production in silica fibers doped with Tm3+[J]. Opt Lett, 1993, 18(24): 2105-2107.
[44] MURATA K, FUJIMOTO Y, KANABE T, et al. Bi-doped SiO2 as a new laser material for an intense laser[J]. Fusion Eng Des, 1999, 44(1): 437-439.
[45] THIPPARAPU N K, WANG Y, WANG S, et al. Bi-doped fiber amplifiers and lasers[J]. Opt Mater Express, 2019, 9(6): 2446-2465.
[46] DIANOV EM, SHUBIN AV, MELKUMOV MA, et al. High-power cw
[47] THIPPARAPU N K, JAIN S, UMNIKOV A A, et al. 1 120 nm diode-pumped Bi-doped fiber amplifier[J]. Opt Lett, 2015, 40(10): 2441-2444.
[48] BUFETOV I, MELKUMOV M, KHOPIN V, et al. Efficient Bi-doped fiber lasers and amplifiers for the spectral region 1 300-1 500 nm[C]// SPIE LASE, California, United States, 2010:7580.
[49] THIPPARAPU N K, WANG Y, UMNIKOV A A, et al. 40 dB gain all fiber bismuth-doped amplifier operating in the O-band[J]. Opt Lett, 2019, 44(9): 2248-2251.
[50] FIRSTOV S V, ALYSHEV S V, RIUMKIN K E, et al.Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm[J]. Opt Lett, 2015, 40(18): 4360-4363.
[51] FIRSTOV S V, ALYSHEV S V, RIUMKIN K E, et al. A 23-dB bismuth-doped optical fiber amplifier for a 1 700 nm band[J]. Sci Rep, 2016, 6(1): 28939.
[52] LDI A, VMM A, FOMA B, et al. Microstructure, composition, and luminescent properties of bismuth-doped porous glass and optical fiber preforms[J]. J Non-Cryst Solids, 2019, s 503-504: 28-35.
[53] DIANOV E M, YANG L, ISKHAKOVA L D, et al. Use of nanoporous glass for the fabrication of heavily bismuth-doped active optical fibres[J]. Quantum Electron, 2018, 48(7): 658-661.