• Study On Optical Communications
  • Vol. 50, Issue 1, 23015301 (2024)
Jian GE1, Yongtao HUANG2,*, and Jianguo Yü2
Author Affiliations
  • 1Internet Center, Institute of Technology and Standards China Academy of Information and Communication Technology, Beijing 100098, China
  • 2School of Electrical and Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.13756/j.gtxyj.2024.230153 Cite this Article
    Jian GE, Yongtao HUANG, Jianguo Yü. Research Progress in New Multi-carrier Optical Communication Systems[J]. Study On Optical Communications, 2024, 50(1): 23015301 Copy Citation Text show less
    References

    [1] Lu Y, Zheng X. 6G: a Survey on Technologies, Scenarios, Challenges, and the Related Issues[J]. Journal of Industrial Information Integration, 19, 100158(2020).

    [2] Huang Q H, He J. The Core Capability, Function and Strategy of Chinese Manufacturing Industry—Comment on“Chinese Manufacturing 2025”[J]. China Industrial Economics, 5-17(2015).

    [4] Li Y, Stüber G L[M]. Orthogonal Frequency Division Multiplexing for Wireless Communications(2006).

    [5] Sahrab A A, Yaseen A D. Filtered Orthogonal Frequency Division Multiplexing for Improved 5G Systems[J]. Bulletin of Electrical Engineering and Informatics, 10, 2079-2087(2021).

    [6] Nissel R, Schwarz S, Rupp M. Filter Bank Multicarrier Modulation Schemes for Future Mobile Communications[J]. IEEE Journal on Selected Areas in Communications, 35, 1768-1782(2017).

    [7] Vakilian V, Wild T, Schaich F et al. Universal-filtered Multi-carrier Technique for Wireless Systems beyond LTE[C], 223-228(2013).

    [8] Han Y, Li G F. Coherent Optical Communication Using Polarization Multiple-input-multiple-output[J]. Optics Express, 13, 7527-7534(2005).

    [9] Jolley N E, Kee H, Pickard P et al. Generation and Propagation of a 1 550 nm 10 Gbit/s Optical Orthogonal Frequency Division Multiplexed Signal over 1 000 m of Multimode Fibre Using a Directly Modulated DFB[C], 193168(2005).

    [10] Shieh W, Athaudage C. Coherent Optical Orthogonal Frequency Division Multiplexing[J]. Electronics Letters, 42, 587-589(2006).

    [11] Hewitt D F, Skafidas E. Performance and Applications of Gigabit OFDM over Optical Fibre Systems in Metro and Access Networks[C], 4801347(2006).

    [12] Jansen S L, Morita I, Schenk T C W et al. Coherent Optical 25.8-Gb/s OFDM Transmission over 4160-km SSMF[J]. Journal of Lightwave Technology, 26, 6-15(2008).

    [13] Chandrasekhar S, Liu X. Terabit Superchannels for High Spectral Efficiency Transmission[C], 5621580(2010).

    [14] Xu Y M, Li X Y, Yu J J et al. Simple and Reconfigured Single-sideband OFDM RoF System[J]. Optics Express, 24, 22830-22835(2016).

    [15] Zhang X Y, Van Luong T, Petropoulos P et al. Machine-learning-aided Optical OFDM for Intensity Modulated Direct Detection[J]. Journal of Lightwave Technology, 40, 2357-2369(2022).

    [16] Xu Y F, Qiao Y J, Ji Y F. Improving Nonlinearity Tolerance of 112-Gb/s PDM OFDM Systems with Coherent Detection Using BLAST Algorithm[J]. Chinese Optics Letters, 10, 110601(2012).

    [17] Fang X, Yang C C, Zhang F. Time-domain Maximum-likelihood Channel Estimation for PDM CO-OFDM Systems[J]. IEEE Photonics Technology Letters, 25, 619-622(2013).

    [18] Zhou J, Qiao Y J, Yang Z Y et al. Capacity Limit for Faster-than-Nyquist Non-orthogonal Frequency-division Multiplexing Signaling[J]. Scientific Reports, 7, 3380(2017).

    [19] Saljoghei A, Gutiérrez F A, Perry P et al. Experimental Comparison of FBMC and OFDM for Multiple Access Uplink PON[J]. Journal of Lightwave Technology, 35, 1595-1604(2017).

    [20] Nguyen T H, Bramerie L, Gay M et al. Experimental Demonstration of the Tradeoff between Chromatic Dispersion and Phase Noise Compensation in Optical FBMC/OQAM Communication Systems[J]. Journal of Lightwave Technology, 37, 4340-4348(2019).

    [21] Alaghbari K A, Lim H S, Eltaif T. Compensation of Chromatic Dispersion and Nonlinear Phase Noise Using Iterative Soft Decision Feedback Equalizer for Coherent Optical FBMC/OQAM Systems[J]. Journal of Lightwave Technology, 38, 3839-3849(2020).

    [22] Bahaaelden M S, Ortega B, Pérez-Jiménez R et al. Efficiency Analysis of a Truncated Flip-FBMC in Burst Optical Transmission[J]. IEEE Access, 9, 100558-100569(2021).

    [23] Fang X, Wang Y C, Suo Z F et al. Analysis of the Time-frequency Localization Property of the Filter Banks for Optical OFDM/OQAM Systems[J]. Journal of Lightwave Technology, 37, 5392-5405(2019).

    [24] Feng Z H, Xu L, Wu Q et al. Ultra-high Capacity WDM-SDM Optical Access Network with Self-homodyne Detection Downstream and 32QAM-FBMC Upstream[J]. Optics Express, 25, 5951-5961(2017).

    [25] Chen X, Yan S Y, Tang M et al. K-means Assisted Adaptively Partitioned Entropy Loading for FBMC/OQAM System[C], M1G.4(2020).

    [26] Liu J J, Wang D B, Tuo M S et al. Joint Estimation Algorithm of Time Offset and Channel Response for Coherent Optical FBMC-OQAM Systems[J]. Chinese Journal of Lasers, 47, 1106001(2020).

    [27] Zhang X L, Zhang C F, Zhu M Y et al. SSB Pruned DFT-spread FBMC Signal with Low PAPR in Direct-detection PONs[J]. IEEE Photonics Journal, 12, 1-13(2020).

    [28] Chu J M, Gao M Y, Liu X L et al. Channel Estimation based on Complex-valued Neural Networks in IM/DD FBMC/OQAM Transmission System[J]. Journal of Lightwave Technology, 40, 1055-1063(2022).

    [29] Kang S M, Kim C H, Jung S M et al. Timing-offset-tolerant Universal- Filtered Multicarrier Passive Optical Network for Asynchronous Multiservices-over-fiber[J]. Journal of Optical Communications and Networking, 8, 229-237(2016).

    [30] Chen Y W, Zhang R, Su S J et al. Asynchronous Multi-service Fiber-wireless Integrated Network Using UFMC and PS for Flexible 5G Applications[C], m2h.4(2020).

    [31] Kasmi M, Mhatli S, Bahloul F et al. Performance Analysis of UFMC Waveform in Graded Index Fiber for 5G Communications and Beyond[J]. Optics Communications, 454, 124360(2020).

    [32] Lin J Q, Li L S, Bi M H et al. A Study on Performance Improvement of IMDD-UFMC with Modified K-means Non-uniform Quantization[J]. Optics Communications, 476, 126324(2020).

    [33] Xu H Y, Bi M H, Hu F F et al. A GMM-based Non-uniform Quantization Scheme for Improving Low-resolution IMDD-UFMC System Performance[J]. Optical Fiber Technology, 71, 102943(2022).

    [34] Zhang C J, Gao M Y, Shi Y et al. Experimental Comparison of Orthogonal Frequency Division Multiplexing and Universal Filter Multi-carrier Transmission[J]. Journal of Lightwave Technology, 39, 7052-7060(2021).

    Jian GE, Yongtao HUANG, Jianguo Yü. Research Progress in New Multi-carrier Optical Communication Systems[J]. Study On Optical Communications, 2024, 50(1): 23015301
    Download Citation