• Laser & Optoelectronics Progress
  • Vol. 61, Issue 4, 0428004 (2024)
Xingtao Ming and Dehong Yang*
Author Affiliations
  • Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • show less
    DOI: 10.3788/LOP231148 Cite this Article Set citation alerts
    Xingtao Ming, Dehong Yang. Building Extraction from Remote Sensing Image Based on Multi-Module[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0428004 Copy Citation Text show less
    MM-Unet structure
    Fig. 1. MM-Unet structure
    Plain unit and residual unit. (a) Plain unit; (b) residual unit
    Fig. 2. Plain unit and residual unit. (a) Plain unit; (b) residual unit
    Module improvements. (a) Atrous spatial pyramid pooling module; (b) multi-scale feature enhancement module
    Fig. 3. Module improvements. (a) Atrous spatial pyramid pooling module; (b) multi-scale feature enhancement module
    UAC module
    Fig. 4. UAC module
    Dual attention module
    Fig. 5. Dual attention module
    Comparison results of Massachusetts Building dataset. (a) Images; (b) labels; (c) FCN; (d) SegNet; (e) Unet; (f) Unet++; (g) MM-Unet
    Fig. 6. Comparison results of Massachusetts Building dataset. (a) Images; (b) labels; (c) FCN; (d) SegNet; (e) Unet; (f) Unet++; (g) MM-Unet
    Comparison results of WHU Building dataset. (a) Images; (b) labels; (c) FCN; (d) SegNet; (e) Unet; (f) Unet++; (g) MM-Unet
    Fig. 7. Comparison results of WHU Building dataset. (a) Images; (b) labels; (c) FCN; (d) SegNet; (e) Unet; (f) Unet++; (g) MM-Unet
    Comparison results of ISPRS Vaihingen dataset. (a) Images; (b) labels; (c) FCN; (d) SegNet; (e) Unet; (f) Unet++; (g) MM-Unet
    Fig. 8. Comparison results of ISPRS Vaihingen dataset. (a) Images; (b) labels; (c) FCN; (d) SegNet; (e) Unet; (f) Unet++; (g) MM-Unet
    DatasetResolution /mTrain numberValidation numberTest number
    Massachusetts Building1.00741628890
    WHU Building0.30473610362416
    ISPRS Vaihingen0.092752736306
    Table 1. Experimental dataset
    ModelROARprecisionRrecallsF1RIoU
    FCN92.7880.5380.7080.6167.52
    SegNet93.0081.8381.6881.7569.87
    Unet93.7683.4781.9082.6871.21
    Unet++94.1485.5282.4783.9772.37
    MM-Unet94.4686.3983.1284.7273.42
    Table 2. Accuracy comparison of Massachusetts Building dataset
    ModelROARprecisionRrecallsF1RIoU
    FCN98.6493.6594.2093.9288.54
    SegNet98.6293.9094.0093.9588.59
    Unet98.6893.9794.2394.1088.86
    Unet++98.7994.9093.9194.4089.39
    MM-Unet98.8595.3594.2594.8090.11
    Table 3. Accuracy comparison of WHU Building dataset
    ModelROARprecisionRrecallsF1RIoU
    FCN95.8092.5690.3391.4384.57
    SegNet95.4691.9890.0991.0283.53
    Unet95.5791.8790.2691.0583.66
    Unet++95.6391.1891.6491.4084.17
    MM-Unet95.9592.9591.6892.3185.21
    Table 4. Accuracy comparison of ISPRS Vaihingen dataset
    ModelROARprecisionRrecallsF1RIoU
    Unet93.7683.4781.9082.6871.21
    Unet+DAM94.0885.4682.0583.7272.16
    Unet+DAM+MFCM94.2386.1582.9784.5373.15
    MM-Unet94.4686.3983.1284.7273.42
    Table 5. Ablation experiments of Massachusetts Building dataset
    ModelROARprecisionRrecallsF1RIoU
    Unet98.6893.9794.2394.1088.86
    Unet+DAM98.7394.5594.0994.3289.25
    Unet+DAM+MFCM98.8095.0994.0594.5789.70
    MM-Unet98.8595.3594.2594.8090.11
    Table 6. Ablation experiments of WHU Building dataset
    ModelROARprecisionRrecallsF1RIoU
    Unet95.5791.8790.2691.0583.66
    Unet+DAM95.8492.0691.2591.6584.59
    Unet+DAM+MFCM95.9092.7490.9391.8284.88
    MM-Unet95.9592.9591.6892.3185.21
    Table 7. Ablation experiments of ISPRS Vaihingen dataset