• Chinese Optics Letters
  • Vol. 23, Issue 2, 023605 (2025)
Shengnan Guan1, Jierong Cheng1,2,*, Haifeng Xu1, Fan Li1, and Shengjiang Chang1,3
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
  • 3Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
  • show less
    DOI: 10.3788/COL202523.023605 Cite this Article Set citation alerts
    Shengnan Guan, Jierong Cheng, Haifeng Xu, Fan Li, Shengjiang Chang, "Terahertz metalenses for needle beam generation through coherent polarization multiplexing," Chin. Opt. Lett. 23, 023605 (2025) Copy Citation Text show less
    References

    [1] Y. Huang, Y. Shen, J. Wang. From terahertz imaging to terahertz wireless communications. Engineering, 22, 106(2023).

    [2] M. Gezimati, G. Singh. Advances in terahertz technology for cancer detection applications. Opt. Quantum Electron., 55, 151(2022).

    [3] X. Cai, A. B. Sushkov, R. J. Suess et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol., 9, 814(2014).

    [4] T. Nagatsuma, G. Ducournau, C. C. Renaud. Advances in terahertz communications accelerated by photonics. Nat. Photonics, 10, 371(2016).

    [5] J. Ma, R. Shrestha, J. Adelberg et al. Security and eavesdropping in terahertz wireless links. Nature, 563, 89(2018).

    [6] B. Wang, S. Zhong, T. L. Lee et al. Non-destructive testing and evaluation of composite materials/structures: a state-of-the-art review. Adv. Mech. Eng., 12, 1(2014).

    [7] R. Zhao, Q. Niu, Y. Zou et al. A terahertz metasurface biosensor based on electromagnetically induced transparency for fingerprint trace detection. J. Mater. Chem. C, 12, 6106(2024).

    [8] X. Yang, P. Liu, S. Wang et al. Defect detection of composite material terahertz image based on faster region-convolutional neural networks. Materials, 16, 317(2023).

    [9] J. Li, G. Wang, Z. Yue et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron. Adv., 5, 210062(2022).

    [10] S. Zhixiong, Z. Shenghang, L. Xinan et al. Liquid crystal integrated metalens with tunable chromatic aberration. Adv. Photonics, 2, 036002(2022).

    [11] S. Zhou, K. Xi, S. Zhuang et al. Spherical aberration-corrected metalens for polarization multiplexed imaging. Nanomaterials, 11, 2774(2021).

    [12] Y. Xu, J. Gu, Y. Gao et al. Broadband achromatic terahertz metalens constituted by Si–SiO2–Si hybrid meta-atoms. Adv. Funct. Mater., 33, 2302821(2023).

    [13] Q. Cheng, M. Ma, D. Yu et al. Broadband achromatic metalens in terahertz regime. Sci. Bull., 64, 1525(2019).

    [14] Z. Wang, Q. Li, F. Yan. A high numerical aperture terahertz all-silicon metalens with sub-diffraction focus and long depth of focus. J. Phys. D Appl. Phys., 54, 085103(2021).

    [15] H. Chen, Z. Wu, Z. Li et al. Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens. Opt. Express, 26, 29817(2018).

    [16] H. Phan, K. Kim, J. Seo et al. Numerical design of 0.99 numerical aperture planar metalens for high spatial resolution terahertz imaging. IEEE Access, 12, 18685(2024).

    [17] S. Moein, T. Suleski. Freeform optics for variable extended depth of field imaging. Opt. Express, 29, 40524(2021).

    [18] X. Y. Jiang, J. S. Ye, J. W. He et al. An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Opt. Express, 21, 30030(2013).

    [19] G. Yuan, S. Wei, X. Yuan. Nondiffracting transversally polarized beam. Opt. Lett., 36, 3479(2011).

    [20] J. Fu, X. Yu, Y. Wang et al. Generation of pure longitudinal magnetization needle with tunable longitudinal depth by focusing azimuthally polarized beams. Appl. Phys. B Lasers Opt., 124, 11(2017).

    [21] E. Bayati, R. Pestourie, S. Colburn et al. Inverse designed metalenses with extended depth of focus. ACS Photonics, 7, 873(2020).

    [22] E. Bayati, R. Pestourie, S. Colburn et al. Inverse designed extended depth of focus meta-optics for broadband imaging in the visible. Nanophotonics, 11, 2531(2022).

    [23] Y. Bao, L. Wen, Q. Chen et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Sci. Adv., 7, eabh0365(2021).

    [24] Y. Bao, F. Nan, J. Yan et al. Observation of full-parameter Jones matrix in bilayer metasurface. Nat. Commun., 13, 7550(2022).

    [25] C. Feng, T. He, Y. Shi et al. Diatomic metasurface for efficient six-channel modulation of Jones matrix. Laser Photon. Rev., 17, 2200955(2023).

    [26] S. Guan, J. Cheng, Z. Tan et al. Full-parameter symmetric jones matrix construction and non-orthogonal-polarization multiplexed wavefront shaping over a lossy metasurface. Laser Photon. Rev., 2400299(2024).

    [27] B. Xiong, Y. Liu, Y. Xu et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science, 379, 294(2023).

    [28] C. Chen, X. Xiao, X. Ye et al. Neural network assisted high-spatial-resolution polarimetry with non-interleaved chiral metasurfaces. Light-Sci. Appl., 12, 288(2023).

    [29] J. Ji, C. Chen, J. Sun et al. High-dimensional Poincaré beams generated through cascaded metasurfaces for high-security optical encryption. PhotoniX, 5, 13(2024).

    Shengnan Guan, Jierong Cheng, Haifeng Xu, Fan Li, Shengjiang Chang, "Terahertz metalenses for needle beam generation through coherent polarization multiplexing," Chin. Opt. Lett. 23, 023605 (2025)
    Download Citation