[4] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[9] XU X L, QI C Y, HAO Z D, et al. The surface coating of commercial LiFePO4 by utilizing ZIF-8 for high electrochemical performance lithium ion battery[J]. Nano-Micro Letters, 2017, 10(1): 1-9.
[10] YUAN Y, WANG B, SONG R S, et al. A LiFePO4/Li2Sn hybrid system with enhanced Li-ion storage performance[J]. New Journal of Chemistry, 2018, 42(9): 6626-6630.
[11] ZHANG Q, SHA Z F, CUI X, et al. Incorporation of redox-active polyimide binder into LiFePO4 cathode for high-rate electrochemical energy storage[J]. Nanotechnology Reviews, 2020, 9(1): 1350-1358.
[12] HUANG C Y, KUO T R, YOUGBAR S, et al. Design of LiFePO4 and porous carbon composites with excellent high-rate charging performance for lithium-ion secondary battery[J]. Journal of Colloid and Interface Science, 2022, 607: 1457-1465.
[13] TIAN J P, XIONG R, SHEN W X, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles: a deep-learning enabled approach[J]. Applied Energy, 2021, 291: 116812.
[14] SHIBAGAKI T, MERLA Y, OFFER G J. Tracking degradation in lithium iron phosphate batteries using differential thermal voltammetry[J]. Journal of Power Sources, 2018, 374: 188-195.
[15] LI Y W, WANG C, GONG J F. A wavelet transform-adaptive unscented Kalman filter approach for state of charge estimation of LiFePO4 battery[J]. International Journal of Energy Research, 2018, 42(2): 587-600.
[17] YANG Y X, MENG X Q, CAO H B, et al. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process[J]. Green Chemistry, 2018, 20(13): 3121-3133.
[18] JIN H, ZHANG J L, WANG D D, et al. Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation-water leaching at room temperature[J]. Green Chemistry, 2022, 24(1): 152-162.
[19] XU Y L, QIU X J, ZHANG B C, et al. Start from the source: direct treatment of a degraded LiFePO4 cathode for efficient recycling of spent lithium-ion batteries[J]. Green Chemistry, 2022, 24(19): 7448-7457.
[20] WANG Z X, HUANG Y, WANG X, et al. Advanced solid-state electrolysis for green and efficient spent LiFePO4 cathode material recycling: prototype reactor tests[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12318-12328.
[21] ZHANG J L, HU J T, LIU Y B, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631.
[22] LI L, BIAN Y F, ZHANG X X, et al. A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries[J]. Waste Management, 2019, 85: 437-444.
[23] LIANG Q, YUE H F, WANG S F, et al. Recycling and crystal regeneration of commercial used LiFePO4 cathode materials[J]. Electrochimica Acta, 2020, 330: 135323.
[24] YADAV P, JIE C J, TAN S, et al. Recycling of cathode from spent lithium iron phosphate batteries[J]. Journal of Hazardous Materials, 2020, 399: 123068.
[27] HUANG Z H, LI H, MEI W X, et al. Thermal runaway behavior of lithium iron phosphate battery during penetration[J]. Fire Technology, 2020, 56(6): 2405-2426.
[28] BUGRYNIEC P J, DAVIDSON J N, CUMMING D J, et al. Pursuing safer batteries: thermal abuse of LiFePO4 cells[J]. Journal of Power Sources, 2019, 414: 557-568.
[29] LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116949.
[30] MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717.
[31] PENG Y, YANG L Z, JU X Y, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J]. Journal of Hazardous Materials, 2020, 381: 120916.
[32] WANG S J, RAFIZ K, LIU J L, et al. Effects of lithium dendrites on thermal runaway and gassing of LiFePO4 batteries[J]. Sustainable Energy & Fuels, 2020, 4(5): 2342-2351.
[33] MONIKA K, CHAKRABORTY C, ROY S, et al. An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles[J]. Journal of Energy Storage, 2021, 35: 102301.
[34] MENG X D, LI S, FU W D, et al. Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires[J]. eTransportation, 2022, 11: 100142.