[1] KOTZ F, ARNOLD K, BAUER W, et al. Three-dimensional printing of transparent fused silica glass[J]. Nature, 2017, 544(7650): 337-339.
[2] MADER M, HAMBITZER L, BECKER H, et al. High-throughput manufacturing of transparent fused silica glass by injection molding and extrusion[C]//SPIE BiOS. Proc SPIE 11955, Microfluidics, BioMEMS, and Medical Microsystems XX, San Francisco, California, USA. 2022, 11955: 68-73.
[3] KLEIN J, STERN M, FRANCHIN G, et al. Additive manufacturing of optically transparent glass[J]. 3D Print Addit Manuf, 2015, 2(3): 92-105.
[4] LIU C, QIAN B, LIU X F, et al. Additive manufacturing of silica glass using laser stereolithography with a top-down approach and fast debinding[J]. RSC Adv, 2018, 8(29): 16344-16348.
[5] LUO J J, PAN H, KINZEL E C. Additive manufacturing of glass[J]. J Manuf Sci Eng, 2014, 136(6): 061024.
[6] MOORE D G, BARBERA L, MASANIA K, et al. Three-dimensional printing of multicomponent glasses using phase-separating resins[J]. Nat Mater, 2020, 19(2): 212-217.
[7] NGUYEN D T, MEYERS C, YEE T D, et al. 3D printing: 3D-printed transparent glass[J]. Adv Mater, 2017, 29(26): 1701181.
[8] SASAN K, LANGE A, YEE T D, et al. Additive manufacturing of optical quality germania-silica glasses[J]. ACS Appl Mater Interfaces, 2020, 12(5): 6736-6741.
[9] OKPOWE O, DROZD V, ARES-MUZIO O, et al. Additive manufacturing of borosilicate glass via stereolithography[J]. Ceram Int, 2022, 48(9): 12721-12728.
[10] COOPERSTEIN I, SHUKRUN E, PRESS O, et al. Additive manufacturing of transparent silica glass from solutions[J]. ACS Appl Mater Interfaces, 2018, 10(22): 18879-18885.
[11] CHEN X F, LIU W Z, DONG B Q, et al. High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness[J]. Adv Mater, 2018, 30(18): e1705683.
[12] CHEWPRADITKUL W, CHEN D, YU B, et al. Luminescence and scintillation of Eu2+-doped high silica glass[J]. Phys Rapid Res Lett, 2011, 5(1): 40-42.
[13] YANG L Y, YAMASHITA M, AKAI T. Green and red high-silica luminous glass suitable for near-ultraviolet excitation[J]. Opt Express, 2009, 17(8): 6688-6695.
[14] KOTZ F, PLEWA K, BAUER W, et al. Liquid glass: A facile soft replication method for structuring glass[J]. Adv Mater, 2016, 28(23): 4646-4650.
[15] LIU C, QIAN B, NI R P, et al. 3D printing of multicolor luminescent glass[J]. RSC Adv, 2018, 8(55): 31564-31567.
[16] CHEN Q Q, FANG Z J, SONG H, et al. Femtosecond laser induced space-selective precipitation of Cr3+-doped ZnAl2O4 crystal in glass[J]. J Alloys Compd, 2017, 699: 243-246.
[17] DUAN X L, YUAN D R, CHENG X F, et al. Optical absorption of Co2+-doped silica gel-derived glasses[J]. Opt Mater, 2003, 23(1-2): 327-330.
[18] EL-KHATEEB S A, SAEED A. Impact of ligands on the performance of band-stop and bandpass optical filter of cobalt sodium zinc borate glass[J]. Opt Quantum Electron, 2023, 55(9): 1-14.
[19] BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms[J]. J Am Chem Soc, 1951, 73(1): 373-380.
[20] FRIDMAN V Z, XING R, SEVERANCE M. Investigating the CrOx/Al2O3 dehydrogenation catalyst model: I. identification and stability evaluation of the Cr species on the fresh and equilibrated catalysts[J]. Appl Catal A Gen, 2016, 523: 39-53.
[21] ANDREWS L J, LEMPICKI A, MCCOLLUM B C. Spectroscopy and photokinetics of chromium (III) in glass[J]. J Chem Phys, 1981, 74(10): 5526-5538.
[22] LEMPICKI A, ANDREWS L, NETTEL S J, et al. Spectroscopy of Cr3+ in glasses: Fano antiresonances and vibronic “lamb shift”[J]. Phys Rev Lett, 1980, 44(18): 1234-1237.
[23] FANG Z J, ZHENG S P, PENG W C, et al. Fabrication and characterization of glass-ceramic fiber-containing Cr3+-doped ZnAl2O4 nanocrystals[J]. J Am Ceram Soc, 2015, 98(9): 2772-2775.
[24] FU W B, ZHANG C M, LI Z W, et al. Luminescence of Cr3+/Yb3+ co-doped oxyfluoride silicate glasses for crystalline silicon solar cell down-conversion devices[J]. Ceram Int, 2020, 46(10): 15054-15060.
[25] ASKALANI P. The two-electron transition, 4T1g(F)→4A2g(F), in the spectra of octahedral oxygen-coordinated cobalt(II) species[J]. Transition Met Chem, 1986, 11(12): 469-471.
[26] KROL I, AVETISOV R, ZYKOVA M, et al. Zinc borosilicate glasses doped with Co2+ ions: Synthesis and optical properties[J]. Opt Mater, 2022, 132: 112768.