[1] SONG K, CHEN X S, YANG R, et al. Novel hierarchical CoFe2Se4@CoFe2O4 and CoFe2S4@CoFe2O4 core-shell nanoboxes electrode for high-performance electrochemical energy storage[J]. Chem Eng J, 2020, 390: 124175.
[2] MEI H, ZHANG L, ZHANG K L, et al. Conversion of MOF into carbon-coated NiSe2 yolk-shell microspheres as advanced battery-type electrodes[J]. Electrochim Acta, 2020, 357: 136866.
[3] CHEN H C, JIANG S P, XU B H, et al. Sea-urchin-like nickel-cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors[J]. J Mater Chem A, 2019, 7(11): 6241-6249.
[4] LIU H J, ZHU J C, LI Z, et al. Fe2O3/N doped rGO anode hybridized with NiCo LDH/Co(OH)2 cathode for battery-like supercapacitor[J]. Chem Eng J, 2021, 403: 126325.
[5] LIU S D, YIN Y, NI D X, et al. New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors[J]. Energy Storage Mater, 2019, 22: 384-396.
[6] YU X Y, DAVID LOU X W. Mixed metal sulfides for electrochemical energy storage and conversion[J]. Adv Energy Mater, 2018, 8(3): 1701592.
[7] NAGARAJU G, CHA S M, SEKHAR S C, et al. Metallic layered polyester fabric enabled nickel selenide nanostructures as highly conductive and binderless electrode with superior energy storage performance[J]. Adv Energy Mater, 2017, 7(4): 1601362.
[8] SUN W W, CAI C, TANG X X, et al. Carbon coated mixed-metal selenide microrod: Bimetal-organic-framework derivation approach and applications for lithium-ion batteries[J]. Chem Eng J, 2018, 351: 169-176.
[9] CHANG A L, ZHANG C, YU Y, et al. Plasma-assisted synthesis of NiSe2 ultrathin porous nanosheets with selenium vacancies for supercapacitor[J]. ACS Appl Mater Interfaces, 2018, 10(49): 41861-41865.
[10] LI X, WU H J, GUAN C, et al. (Ni, Co)Se2/NiCo-LDH core/shell structural electrode with the cactus-like (Ni, Co)Se2 core for asymmetric supercapacitors[J]. Small, 2019, 15(3): e1803895.
[11] LIU X, DING S S, YE L, et al. Optimizing the supercapacitive performance via encasing MOF-derived hollow (Ni, Co)Se2 nanocubes into reduced graphene oxide[J]. Chem Eng J, 2020, 399: 125789.
[12] MANURAJ M, JYOTHILAKSHMI S, NARAYANAN UNNI K N, et al. MoSe2 nanoflowers as efficient electrode materials for supercapacitors[J]. J Mater Sci Mater Electron, 2020, 31(22): 20571-20577.
[13] XIONG X H, DING D, CHEN D C, et al. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors[J]. Nano Energy, 2015, 11: 154-161.
[14] MARIAPPAN V K, KRISHNAMOORTHY K, PAZHAMALAI P, et al. Electrodeposited molybdenum selenide sheets on nickel foam as a binder-free electrode for supercapacitor application[J]. Electrochim Acta, 2018, 265: 514-522.
[15] GAO M J, LE K, XU D M, et al. Controlled sulfidation towards achieving core-shell 1D-NiMoO4 @ 2D-NiMoS architecture for high-performance asymmetric supercapacitor[J]. J Alloys Compd, 2019, 804: 27-34.
[16] FANG M, GAO W, DONG G F, et al. Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions[J]. Nano Energy, 2016, 27: 247-254.
[17] CHEN T Y, VEDHANARAYANAN B, LIN S Y, et al. Electrodeposited NiSe on a forest of carbon nanotubes as a free-standing electrode for hybrid supercapacitors and overall water splitting[J]. J Colloid Interface Sci, 2020, 574: 300-311.
[19] REDDY MULE A, RAMULU B, YU J S. Tri-metallic core-shell structures by confining crystalline nanorod and amorphous nanosheet architectures for high-performance hybrid supercapacitors[J]. Chem Eng J, 2023, 451: 139018.
[20] PENG S J, LI L L, WU H B, et al. Controlled growth of NiMoO4Nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors[J]. Adv Energy Mater, 2015, 5(2): 1401172.
[21] ZHANG H F, LU C X, HOU H, et al. Tuning the electrochemical performance of NiCo2O4@NiMoO4 core-shell heterostructure by controlling the thickness of the NiMoO4 shell[J]. Chem Eng J, 2019, 370: 400-408.
[22] NING J Y, ZHANG D, SONG H H, et al. Branched carbon-encapsulated MnS core/shell nanochains prepared via oriented attachment for lithium-ion storage[J]. J Mater Chem A, 2016, 4(31): 12098-12105.
[24] BALASINGAM S K, LEE J S, JUN Y. Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors[J]. Dalton Trans, 2015, 44(35): 15491-15498.
[25] ZHAO X J, WAN H Z, LIANG P, et al. Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices[J]. Nano Res, 2021, 14(8): 2574-2583.
[26] MAO X Q, ZOU Y J, LIANG J, et al. Facile synthesis of hierarchical Co—Mo—O—S porous microspheres for high-performance supercapacitors[J]. Ceram Int, 2020, 46(2): 1448-1456.
[27] CHANG X W, LI W L, LIU Y H, et al. Synthesis and characterization of NiCo2O4 nanospheres/nitrogen-doped graphene composites with enhanced electrochemical performance[J]. J Alloys Compd, 2019, 784: 293-300.
[28] YANG P H, MAI W J. Flexible solid-state electrochemical supercapacitors[J]. Nano Energy, 2014, 8: 274-290.
[29] LI C X, QIU X Y, DENG K Q, et al. Electrochemical co-reduction synthesis of Au/ferrocene-graphene nanocomposites and their application in an electrochemical immunosensor of a breast cancer biomarker[J]. Anal Methods, 2014, 6(22): 9078-9084.
[30] WANG Z, YUE H Y, YU Z M, et al. One-pot hydrothermal synthesis of MoSe2 nanosheets spheres-reduced graphene oxide composites and application for high-performance supercapacitor[J]. J Mater Sci Mater Electron, 2019, 30(9): 8537-8545.
[31] AMIRI M, SAEED HOSSEINY DAVARANI S, EBRAHIM MOOSAVIFARD S, et al. Cobalt-molybdenum selenide double-shelled hollow nanocages derived from metal-organic frameworks as high performance electrodes for hybrid supercapacitor[J]. J Colloid Interface Sci, 2022, 616: 141-151.
[32] FEI F, ZHOU H, GU C, et al. Pokeweed leaves derived materials for high-energy-density asymmetric supercapacitor[J]. Colloids Surf A Physicochem Eng Aspects, 2022, 654: 130061.
[33] LIU Y H, LI W L, CHANG X W, et al. MoSe2 nanoflakes-decorated vertically aligned carbon nanotube film on nickel foam as a binder-free supercapacitor electrode with high rate capability[J]. J Colloid Interface Sci, 2020, 562: 483-492.
[34] VIDHYA M S, YUVAKKUMAR R, RAVI G, et al. PVP-assisted grass-like NiSe@ZnSe composite for environmental energy applications[J]. J Mater Sci Mater Electron, 2022, 33(11): 8409-8416.
[35] PENG H, ZHOU J Z, SUN K J, et al. High-performance asymmetric supercapacitor designed with a novel NiSe@MoSe2 nanosheet array and nitrogen-doped carbon nanosheet[J]. ACS Sustain Chem Eng, 2017, 5(7): 5951-5963.
[37] VIDHYA M S, YUVAKKUMAR R, RAVI G, et al. Hydrothermal synthesis of Cu2Se-CoSe nanograin for electrochemical supercapacitor applications[J]. Appl Nanosci, 2021, 11(6): 1881-1888.